井服公司资源调度的遗传算法

A. Brezulianu, L. Fira, M. Fira
{"title":"井服公司资源调度的遗传算法","authors":"A. Brezulianu, L. Fira, M. Fira","doi":"10.14569/IJARAI.2012.010501","DOIUrl":null,"url":null,"abstract":"In this paper, two examples of resources scheduling in well-services companies are solved by means of genetic algorithms: resources for call solving, people scheduling. The results demonstrate that the genetic algorithm approach can provide acceptable solutions to this type of call solving for scheduling in well-services companies. The suggested approach could be easily extended to various resource scheduling areas: process scheduling, transportation scheduling.","PeriodicalId":323606,"journal":{"name":"International Journal of Advanced Research in Artificial Intelligence","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A genetic algorithm approach for scheduling of resources in well-services companies\",\"authors\":\"A. Brezulianu, L. Fira, M. Fira\",\"doi\":\"10.14569/IJARAI.2012.010501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two examples of resources scheduling in well-services companies are solved by means of genetic algorithms: resources for call solving, people scheduling. The results demonstrate that the genetic algorithm approach can provide acceptable solutions to this type of call solving for scheduling in well-services companies. The suggested approach could be easily extended to various resource scheduling areas: process scheduling, transportation scheduling.\",\"PeriodicalId\":323606,\"journal\":{\"name\":\"International Journal of Advanced Research in Artificial Intelligence\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/IJARAI.2012.010501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/IJARAI.2012.010501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文用遗传算法解决了井服公司资源调度的两个问题:呼叫资源求解和人员调度。结果表明,遗传算法方法可以为井服公司调度的这类呼叫求解提供可接受的解决方案。建议的方法可以很容易地扩展到各种资源调度领域:过程调度,运输调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic algorithm approach for scheduling of resources in well-services companies
In this paper, two examples of resources scheduling in well-services companies are solved by means of genetic algorithms: resources for call solving, people scheduling. The results demonstrate that the genetic algorithm approach can provide acceptable solutions to this type of call solving for scheduling in well-services companies. The suggested approach could be easily extended to various resource scheduling areas: process scheduling, transportation scheduling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信