无服务器脑电图数据检索与预处理框架

Bathsheba Farrow, S. Jayarathna
{"title":"无服务器脑电图数据检索与预处理框架","authors":"Bathsheba Farrow, S. Jayarathna","doi":"10.1109/IRI58017.2023.00045","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) research continues to rely heavily on data silos used in isolated physical lab environments. However, as a part of the digital transformation, the EEG community has begun its exploration of the public cloud to determine how it can be best utilized to increase collaboration and accelerate research outcomes. The growing number of online repositories for data and tools has provided additional computational resources but the process of downloading data and software along with the installation and configuration requirements is cumbersome and prone to error. To break away from this research paradigm, we present a novel application of cloud technologies to provide reusable EEG data acquisition and preprocessing software as a service (SaaS) that eliminates data and software downloading prerequisites. We utilize the Amazon Web Services (AWS) cloud platform and serverless technologies to create a distributed, highly scalable and extensible solution for EEG signal data preprocessing that is more conducive to effective collaboration and data reproducibility with the potential to expedite neurotechnology breakthroughs.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Serverless Electroencephalogram Data Retrieval and Preprocessing Framework\",\"authors\":\"Bathsheba Farrow, S. Jayarathna\",\"doi\":\"10.1109/IRI58017.2023.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalogram (EEG) research continues to rely heavily on data silos used in isolated physical lab environments. However, as a part of the digital transformation, the EEG community has begun its exploration of the public cloud to determine how it can be best utilized to increase collaboration and accelerate research outcomes. The growing number of online repositories for data and tools has provided additional computational resources but the process of downloading data and software along with the installation and configuration requirements is cumbersome and prone to error. To break away from this research paradigm, we present a novel application of cloud technologies to provide reusable EEG data acquisition and preprocessing software as a service (SaaS) that eliminates data and software downloading prerequisites. We utilize the Amazon Web Services (AWS) cloud platform and serverless technologies to create a distributed, highly scalable and extensible solution for EEG signal data preprocessing that is more conducive to effective collaboration and data reproducibility with the potential to expedite neurotechnology breakthroughs.\",\"PeriodicalId\":290818,\"journal\":{\"name\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI58017.2023.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑电图(EEG)研究仍然严重依赖于孤立的物理实验室环境中使用的数据孤岛。然而,作为数字化转型的一部分,EEG社区已经开始探索公共云,以确定如何最好地利用它来增加协作和加速研究成果。越来越多的在线数据和工具存储库提供了额外的计算资源,但是下载数据和软件以及满足安装和配置要求的过程非常繁琐,而且容易出错。为了打破这种研究范式,我们提出了一种新的云技术应用,提供可重用的EEG数据采集和预处理软件即服务(SaaS),消除了数据和软件下载的先决条件。我们利用亚马逊网络服务(AWS)云平台和无服务器技术,为脑电图信号数据预处理创建了一个分布式、高度可扩展和可扩展的解决方案,更有利于有效的协作和数据可重复性,并有可能加速神经技术的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Serverless Electroencephalogram Data Retrieval and Preprocessing Framework
Electroencephalogram (EEG) research continues to rely heavily on data silos used in isolated physical lab environments. However, as a part of the digital transformation, the EEG community has begun its exploration of the public cloud to determine how it can be best utilized to increase collaboration and accelerate research outcomes. The growing number of online repositories for data and tools has provided additional computational resources but the process of downloading data and software along with the installation and configuration requirements is cumbersome and prone to error. To break away from this research paradigm, we present a novel application of cloud technologies to provide reusable EEG data acquisition and preprocessing software as a service (SaaS) that eliminates data and software downloading prerequisites. We utilize the Amazon Web Services (AWS) cloud platform and serverless technologies to create a distributed, highly scalable and extensible solution for EEG signal data preprocessing that is more conducive to effective collaboration and data reproducibility with the potential to expedite neurotechnology breakthroughs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信