文本分类中一种新的特征选择方法及特征权值调整技术

Yixing Liao, Xuezeng Pan
{"title":"文本分类中一种新的特征选择方法及特征权值调整技术","authors":"Yixing Liao, Xuezeng Pan","doi":"10.1109/SERA.2009.14","DOIUrl":null,"url":null,"abstract":"Feature selection and feature weight calculating are key preprocesses in text classification. A new feature selection approach based on average interaction gain(AIG) is presented and a new feature weight adjustment technique(WA) taking inter-class distribution and intra-class distribution into consideration is presented too. Then a new approach combining AIG with WA called AIG-WA is presented. In the following experiments, we use a support vector machine(SVM) classifier to compare the performance of AIG and AIG-WA with the commonly used feature selection algorithms. Better performances are obtained when applying this method on Chinese text dataset provided b Fudan Database Center.","PeriodicalId":333607,"journal":{"name":"2009 Seventh ACIS International Conference on Software Engineering Research, Management and Applications","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Feature Selection Approach and Feature Weight Adjustment Technique in Text Classification\",\"authors\":\"Yixing Liao, Xuezeng Pan\",\"doi\":\"10.1109/SERA.2009.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection and feature weight calculating are key preprocesses in text classification. A new feature selection approach based on average interaction gain(AIG) is presented and a new feature weight adjustment technique(WA) taking inter-class distribution and intra-class distribution into consideration is presented too. Then a new approach combining AIG with WA called AIG-WA is presented. In the following experiments, we use a support vector machine(SVM) classifier to compare the performance of AIG and AIG-WA with the commonly used feature selection algorithms. Better performances are obtained when applying this method on Chinese text dataset provided b Fudan Database Center.\",\"PeriodicalId\":333607,\"journal\":{\"name\":\"2009 Seventh ACIS International Conference on Software Engineering Research, Management and Applications\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh ACIS International Conference on Software Engineering Research, Management and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERA.2009.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh ACIS International Conference on Software Engineering Research, Management and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA.2009.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

特征选择和特征权重计算是文本分类的关键预处理过程。提出了一种基于平均相互作用增益(AIG)的特征选择方法和一种考虑类间分布和类内分布的特征权值调整方法。在此基础上,提出了一种将AIG与WA相结合的新方法,称为AIG-WA。在接下来的实验中,我们使用支持向量机(SVM)分类器将AIG和AIG- wa与常用的特征选择算法的性能进行比较。将该方法应用于复旦数据库中心提供的中文文本数据集,取得了较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Feature Selection Approach and Feature Weight Adjustment Technique in Text Classification
Feature selection and feature weight calculating are key preprocesses in text classification. A new feature selection approach based on average interaction gain(AIG) is presented and a new feature weight adjustment technique(WA) taking inter-class distribution and intra-class distribution into consideration is presented too. Then a new approach combining AIG with WA called AIG-WA is presented. In the following experiments, we use a support vector machine(SVM) classifier to compare the performance of AIG and AIG-WA with the commonly used feature selection algorithms. Better performances are obtained when applying this method on Chinese text dataset provided b Fudan Database Center.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信