区间2型模糊神经网络的快速学习方法

D. Olczyk, Urszula Markowska-Kaczmar
{"title":"区间2型模糊神经网络的快速学习方法","authors":"D. Olczyk, Urszula Markowska-Kaczmar","doi":"10.1109/UKCI.2014.6930169","DOIUrl":null,"url":null,"abstract":"The Fuzzy Set Parameter Estimation algorithm is proposed for fast learning interval type-2 fuzzy neural networks applied for classification problems. Classes are disjoint. Learning consists of estimating appropriate values of fuzzy set parameters in every rule. Estimation is based on statistical properties of the training data. The experimental study confirms that it is dozens times quicker than the backpropagation method, while the classification effectiveness is comparable.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast learning method of interval type-2 fuzzy neural networks\",\"authors\":\"D. Olczyk, Urszula Markowska-Kaczmar\",\"doi\":\"10.1109/UKCI.2014.6930169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fuzzy Set Parameter Estimation algorithm is proposed for fast learning interval type-2 fuzzy neural networks applied for classification problems. Classes are disjoint. Learning consists of estimating appropriate values of fuzzy set parameters in every rule. Estimation is based on statistical properties of the training data. The experimental study confirms that it is dozens times quicker than the backpropagation method, while the classification effectiveness is comparable.\",\"PeriodicalId\":315044,\"journal\":{\"name\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2014.6930169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对快速学习区间2型模糊神经网络的分类问题,提出了模糊集参数估计算法。类是不相交的。学习包括估计每条规则中模糊集参数的合适值。估计是基于训练数据的统计属性。实验研究证实,该方法比反向传播方法快几十倍,分类效果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast learning method of interval type-2 fuzzy neural networks
The Fuzzy Set Parameter Estimation algorithm is proposed for fast learning interval type-2 fuzzy neural networks applied for classification problems. Classes are disjoint. Learning consists of estimating appropriate values of fuzzy set parameters in every rule. Estimation is based on statistical properties of the training data. The experimental study confirms that it is dozens times quicker than the backpropagation method, while the classification effectiveness is comparable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信