基于mips的双核处理器瞬态故障分析

Iman Faraji, Moslem Didehban, H. Zarandi
{"title":"基于mips的双核处理器瞬态故障分析","authors":"Iman Faraji, Moslem Didehban, H. Zarandi","doi":"10.1109/ARES.2010.30","DOIUrl":null,"url":null,"abstract":"This paper presents a simulation-based fault injection analysis of a MIPS-based dual-core processor. In order to fulfill the requirement of this analysis, 114 different fault targets are used in various points of main components which are described in VHDL language; each experiment was repeated 50 times, resulting in 5700 transient faults in this simulation model. The experimental results demonstrate that, depending on the fault injection targets and the benchmark characteristics, fault effects vary significantly. On average, up to 35.2% of injected faults are recovered in simulation time, while 52.6% of faults lead to system failure, and the remaining 12.2%, treat as latent errors. Different benchmarks show different vulnerability for various components; but on average, Arbiter and Message passing interface are the most vulnerable components outside the tiles, while PC and Bus Handler have highest failure rate among in-tile components. Fault injection on each region has noticeable impact on the result of the other core. In general, fault injection in Shared regions has highest contribution in system failure.","PeriodicalId":360339,"journal":{"name":"2010 International Conference on Availability, Reliability and Security","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Analysis of Transient Faults on a MIPS-Based Dual-Core Processor\",\"authors\":\"Iman Faraji, Moslem Didehban, H. Zarandi\",\"doi\":\"10.1109/ARES.2010.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a simulation-based fault injection analysis of a MIPS-based dual-core processor. In order to fulfill the requirement of this analysis, 114 different fault targets are used in various points of main components which are described in VHDL language; each experiment was repeated 50 times, resulting in 5700 transient faults in this simulation model. The experimental results demonstrate that, depending on the fault injection targets and the benchmark characteristics, fault effects vary significantly. On average, up to 35.2% of injected faults are recovered in simulation time, while 52.6% of faults lead to system failure, and the remaining 12.2%, treat as latent errors. Different benchmarks show different vulnerability for various components; but on average, Arbiter and Message passing interface are the most vulnerable components outside the tiles, while PC and Bus Handler have highest failure rate among in-tile components. Fault injection on each region has noticeable impact on the result of the other core. In general, fault injection in Shared regions has highest contribution in system failure.\",\"PeriodicalId\":360339,\"journal\":{\"name\":\"2010 International Conference on Availability, Reliability and Security\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2010.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2010.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种基于mips的双核处理器的故障注入仿真分析方法。为了满足分析的要求,在主要部件的各个点使用了114个不同的故障目标,并用VHDL语言进行了描述;每个实验重复50次,得到5700个暂态故障。实验结果表明,根据故障注入目标和基准特征的不同,故障注入效果有显著差异。在模拟时间内,平均高达35.2%的注入故障被恢复,52.6%的故障导致系统失效,其余12.2%被视为潜在错误。不同的基准测试显示不同组件的不同漏洞;但平均而言,仲裁器和消息传递接口是瓦外最脆弱的组件,而PC和总线处理程序在瓦内组件中故障率最高。每个区域的断层注入对其他岩心的结果有明显的影响。通常,共享区域的故障注入对系统故障的贡献最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Transient Faults on a MIPS-Based Dual-Core Processor
This paper presents a simulation-based fault injection analysis of a MIPS-based dual-core processor. In order to fulfill the requirement of this analysis, 114 different fault targets are used in various points of main components which are described in VHDL language; each experiment was repeated 50 times, resulting in 5700 transient faults in this simulation model. The experimental results demonstrate that, depending on the fault injection targets and the benchmark characteristics, fault effects vary significantly. On average, up to 35.2% of injected faults are recovered in simulation time, while 52.6% of faults lead to system failure, and the remaining 12.2%, treat as latent errors. Different benchmarks show different vulnerability for various components; but on average, Arbiter and Message passing interface are the most vulnerable components outside the tiles, while PC and Bus Handler have highest failure rate among in-tile components. Fault injection on each region has noticeable impact on the result of the other core. In general, fault injection in Shared regions has highest contribution in system failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信