{"title":"手工特征与深度学习在医学x射线图像分类中的比较","authors":"M. Zare, D. O. Alebiosu, Sheng Long Lee","doi":"10.1109/INFRKM.2018.8464688","DOIUrl":null,"url":null,"abstract":"The rapid growth and spread of radiographic equipment in medical centres have resulted in a corresponding increase in the number of medical X-ray images produced. Therefore, more efficient and effective image classification techniques are required. Three different techniques for automatic classification of medical X-ray images were compared. A bag-of-visual-words model and a Convolutional Neural Network (CNN) were used to extract features from the images. The two groups of extracted feature vectors were each used to train a linear support vector machine classifier. Third, a fine-tuned CNN was used for end-to-end classification. A pre-trained CNN was used to overcome dataset limitations. The three techniques were evaluated on the ImageCLEF 2007 medical database. The database provides medical X-ray images in 116 categories. The experimental results showed that fine-tuned CNN outperforms the other two techniques by achieving per class classification accuracy above 80% in 60 classes compared to 24 and 26 classes for bag-of-visual-words and CNN extracted features respectively. However, certain classes remain difficult to classify accurately such as classes in the same sub-body region due to inter-class similarity.","PeriodicalId":196731,"journal":{"name":"2018 Fourth International Conference on Information Retrieval and Knowledge Management (CAMP)","volume":"311 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Comparison of Handcrafted Features and Deep Learning in Classification of Medical X-ray Images\",\"authors\":\"M. Zare, D. O. Alebiosu, Sheng Long Lee\",\"doi\":\"10.1109/INFRKM.2018.8464688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth and spread of radiographic equipment in medical centres have resulted in a corresponding increase in the number of medical X-ray images produced. Therefore, more efficient and effective image classification techniques are required. Three different techniques for automatic classification of medical X-ray images were compared. A bag-of-visual-words model and a Convolutional Neural Network (CNN) were used to extract features from the images. The two groups of extracted feature vectors were each used to train a linear support vector machine classifier. Third, a fine-tuned CNN was used for end-to-end classification. A pre-trained CNN was used to overcome dataset limitations. The three techniques were evaluated on the ImageCLEF 2007 medical database. The database provides medical X-ray images in 116 categories. The experimental results showed that fine-tuned CNN outperforms the other two techniques by achieving per class classification accuracy above 80% in 60 classes compared to 24 and 26 classes for bag-of-visual-words and CNN extracted features respectively. However, certain classes remain difficult to classify accurately such as classes in the same sub-body region due to inter-class similarity.\",\"PeriodicalId\":196731,\"journal\":{\"name\":\"2018 Fourth International Conference on Information Retrieval and Knowledge Management (CAMP)\",\"volume\":\"311 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Fourth International Conference on Information Retrieval and Knowledge Management (CAMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFRKM.2018.8464688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Fourth International Conference on Information Retrieval and Knowledge Management (CAMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFRKM.2018.8464688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Handcrafted Features and Deep Learning in Classification of Medical X-ray Images
The rapid growth and spread of radiographic equipment in medical centres have resulted in a corresponding increase in the number of medical X-ray images produced. Therefore, more efficient and effective image classification techniques are required. Three different techniques for automatic classification of medical X-ray images were compared. A bag-of-visual-words model and a Convolutional Neural Network (CNN) were used to extract features from the images. The two groups of extracted feature vectors were each used to train a linear support vector machine classifier. Third, a fine-tuned CNN was used for end-to-end classification. A pre-trained CNN was used to overcome dataset limitations. The three techniques were evaluated on the ImageCLEF 2007 medical database. The database provides medical X-ray images in 116 categories. The experimental results showed that fine-tuned CNN outperforms the other two techniques by achieving per class classification accuracy above 80% in 60 classes compared to 24 and 26 classes for bag-of-visual-words and CNN extracted features respectively. However, certain classes remain difficult to classify accurately such as classes in the same sub-body region due to inter-class similarity.