树莓派上传统和基于cnn的人脸识别实现的比较研究

K. Nakajima, V. Moshnyaga, Koji Hashimoto
{"title":"树莓派上传统和基于cnn的人脸识别实现的比较研究","authors":"K. Nakajima, V. Moshnyaga, Koji Hashimoto","doi":"10.1109/SAMI50585.2021.9378635","DOIUrl":null,"url":null,"abstract":"This paper experimentally compares two face recognition approaches implemented on Raspberry-Pi in the smart-door system. The first approach is based on Local-Binary Patterns Histograms. The second one utilizes convolutional networks and deep learning. The paper describes the implementations and reports the results in terms of recognition accuracy and time. It shows that the CNN based approach runs faster and achieves better recognition accuracy than LBP even on small library sets and limited resources of Raspberry-Pi.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparative study of conventional and CNN-based implementations of facial recognition on Raspberry-Pi\",\"authors\":\"K. Nakajima, V. Moshnyaga, Koji Hashimoto\",\"doi\":\"10.1109/SAMI50585.2021.9378635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper experimentally compares two face recognition approaches implemented on Raspberry-Pi in the smart-door system. The first approach is based on Local-Binary Patterns Histograms. The second one utilizes convolutional networks and deep learning. The paper describes the implementations and reports the results in terms of recognition accuracy and time. It shows that the CNN based approach runs faster and achieves better recognition accuracy than LBP even on small library sets and limited resources of Raspberry-Pi.\",\"PeriodicalId\":402414,\"journal\":{\"name\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI50585.2021.9378635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文通过实验比较了树莓派在智能门系统中实现的两种人脸识别方法。第一种方法是基于局部二值模式直方图。第二个使用卷积网络和深度学习。本文描述了该方法的实现,并报告了识别精度和时间方面的结果。结果表明,即使在小库集和有限资源的树莓派上,基于CNN的方法也比LBP运行速度更快,识别精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of conventional and CNN-based implementations of facial recognition on Raspberry-Pi
This paper experimentally compares two face recognition approaches implemented on Raspberry-Pi in the smart-door system. The first approach is based on Local-Binary Patterns Histograms. The second one utilizes convolutional networks and deep learning. The paper describes the implementations and reports the results in terms of recognition accuracy and time. It shows that the CNN based approach runs faster and achieves better recognition accuracy than LBP even on small library sets and limited resources of Raspberry-Pi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信