全解可满足模理论:应用、算法和基准

Quoc-Sang Phan, P. Malacaria
{"title":"全解可满足模理论:应用、算法和基准","authors":"Quoc-Sang Phan, P. Malacaria","doi":"10.1109/ARES.2015.14","DOIUrl":null,"url":null,"abstract":"Satisfiability Modulo Theories (SMT) is a decision problem for logical formulas over one or more first-order theories. In this paper, we study the problem of finding all solutions of an SMT problem with respect to a set of Boolean variables, henceforth All-SMT. First, we show how an All-SMT solver can benefit various domains of application: Bounded Model Checking, Automated Test Generation, Reliability analysis, and Quantitative Information Flow. Secondly, we then propose algorithms to design an All-SMT solver on top of an existing SMT solver, and implement it into a prototype tool, called aZ3. Thirdly, we create a set of benchmarks for All-SMT in the theory of linear integer arithmetic QF_LIA and the theory of bit vectors with arrays and uninterpreted functions QF_AUFBV. We compare aZ3 against Math SAT, the only existing All-SMT solver, on our benchmarks. Experimental results show that aZ3 is more precise than Math SAT.","PeriodicalId":331539,"journal":{"name":"2015 10th International Conference on Availability, Reliability and Security","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"All-Solution Satisfiability Modulo Theories: Applications, Algorithms and Benchmarks\",\"authors\":\"Quoc-Sang Phan, P. Malacaria\",\"doi\":\"10.1109/ARES.2015.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satisfiability Modulo Theories (SMT) is a decision problem for logical formulas over one or more first-order theories. In this paper, we study the problem of finding all solutions of an SMT problem with respect to a set of Boolean variables, henceforth All-SMT. First, we show how an All-SMT solver can benefit various domains of application: Bounded Model Checking, Automated Test Generation, Reliability analysis, and Quantitative Information Flow. Secondly, we then propose algorithms to design an All-SMT solver on top of an existing SMT solver, and implement it into a prototype tool, called aZ3. Thirdly, we create a set of benchmarks for All-SMT in the theory of linear integer arithmetic QF_LIA and the theory of bit vectors with arrays and uninterpreted functions QF_AUFBV. We compare aZ3 against Math SAT, the only existing All-SMT solver, on our benchmarks. Experimental results show that aZ3 is more precise than Math SAT.\",\"PeriodicalId\":331539,\"journal\":{\"name\":\"2015 10th International Conference on Availability, Reliability and Security\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2015.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

可满足模理论(SMT)是逻辑公式在一个或多个一阶理论上的决策问题。在本文中,我们研究了一个关于布尔变量集的SMT问题的所有解的问题,因此是all -SMT。首先,我们展示了All-SMT求解器如何使各种应用领域受益:有界模型检查、自动测试生成、可靠性分析和定量信息流。其次,我们提出了基于现有SMT求解器设计全SMT求解器的算法,并将其实现到一个名为aZ3的原型工具中。第三,我们在线性整数算法理论QF_LIA和具有数组和未解释函数的位向量理论QF_AUFBV中为All-SMT创建了一组基准。我们将aZ3与Math SAT(唯一现有的All-SMT求解器)在基准测试中进行比较。实验结果表明,aZ3比数学SAT更精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All-Solution Satisfiability Modulo Theories: Applications, Algorithms and Benchmarks
Satisfiability Modulo Theories (SMT) is a decision problem for logical formulas over one or more first-order theories. In this paper, we study the problem of finding all solutions of an SMT problem with respect to a set of Boolean variables, henceforth All-SMT. First, we show how an All-SMT solver can benefit various domains of application: Bounded Model Checking, Automated Test Generation, Reliability analysis, and Quantitative Information Flow. Secondly, we then propose algorithms to design an All-SMT solver on top of an existing SMT solver, and implement it into a prototype tool, called aZ3. Thirdly, we create a set of benchmarks for All-SMT in the theory of linear integer arithmetic QF_LIA and the theory of bit vectors with arrays and uninterpreted functions QF_AUFBV. We compare aZ3 against Math SAT, the only existing All-SMT solver, on our benchmarks. Experimental results show that aZ3 is more precise than Math SAT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信