{"title":"数字化乳房x线影像质量筛查分类器和特征选择方法的比较评价","authors":"Chuin-Mu Wang, Sheng-Chih Yang, P. Chung","doi":"10.1109/LSSA.2006.250418","DOIUrl":null,"url":null,"abstract":"In this paper, three groups of characteristics related to mass texture are adopted, namely, SGLD (spatial gray level dependence), TS (texture spectrum) and TFCM (texture feature coding method) to describe the characteristics of masses and normal textures on digitized mammograms. Next, under the testing by classifiers, three feature selection methods - SBS (sequential backward selection), SFS (sequential forward selection) and SFSM (sequential floating search method) are used to find out suboptimal subset from 19 features in order to improve the performance of mass detection. Finally, two classifiers PNN (probabilistic neural network) and SVM (support vector machine) are applied and their performances are compared","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparative Evaluation of classifiers and Feature Selection Methods for Mass Screening in Digitized Mammograms\",\"authors\":\"Chuin-Mu Wang, Sheng-Chih Yang, P. Chung\",\"doi\":\"10.1109/LSSA.2006.250418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, three groups of characteristics related to mass texture are adopted, namely, SGLD (spatial gray level dependence), TS (texture spectrum) and TFCM (texture feature coding method) to describe the characteristics of masses and normal textures on digitized mammograms. Next, under the testing by classifiers, three feature selection methods - SBS (sequential backward selection), SFS (sequential forward selection) and SFSM (sequential floating search method) are used to find out suboptimal subset from 19 features in order to improve the performance of mass detection. Finally, two classifiers PNN (probabilistic neural network) and SVM (support vector machine) are applied and their performances are compared\",\"PeriodicalId\":360097,\"journal\":{\"name\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSSA.2006.250418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Evaluation of classifiers and Feature Selection Methods for Mass Screening in Digitized Mammograms
In this paper, three groups of characteristics related to mass texture are adopted, namely, SGLD (spatial gray level dependence), TS (texture spectrum) and TFCM (texture feature coding method) to describe the characteristics of masses and normal textures on digitized mammograms. Next, under the testing by classifiers, three feature selection methods - SBS (sequential backward selection), SFS (sequential forward selection) and SFSM (sequential floating search method) are used to find out suboptimal subset from 19 features in order to improve the performance of mass detection. Finally, two classifiers PNN (probabilistic neural network) and SVM (support vector machine) are applied and their performances are compared