数字化乳房x线影像质量筛查分类器和特征选择方法的比较评价

Chuin-Mu Wang, Sheng-Chih Yang, P. Chung
{"title":"数字化乳房x线影像质量筛查分类器和特征选择方法的比较评价","authors":"Chuin-Mu Wang, Sheng-Chih Yang, P. Chung","doi":"10.1109/LSSA.2006.250418","DOIUrl":null,"url":null,"abstract":"In this paper, three groups of characteristics related to mass texture are adopted, namely, SGLD (spatial gray level dependence), TS (texture spectrum) and TFCM (texture feature coding method) to describe the characteristics of masses and normal textures on digitized mammograms. Next, under the testing by classifiers, three feature selection methods - SBS (sequential backward selection), SFS (sequential forward selection) and SFSM (sequential floating search method) are used to find out suboptimal subset from 19 features in order to improve the performance of mass detection. Finally, two classifiers PNN (probabilistic neural network) and SVM (support vector machine) are applied and their performances are compared","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparative Evaluation of classifiers and Feature Selection Methods for Mass Screening in Digitized Mammograms\",\"authors\":\"Chuin-Mu Wang, Sheng-Chih Yang, P. Chung\",\"doi\":\"10.1109/LSSA.2006.250418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, three groups of characteristics related to mass texture are adopted, namely, SGLD (spatial gray level dependence), TS (texture spectrum) and TFCM (texture feature coding method) to describe the characteristics of masses and normal textures on digitized mammograms. Next, under the testing by classifiers, three feature selection methods - SBS (sequential backward selection), SFS (sequential forward selection) and SFSM (sequential floating search method) are used to find out suboptimal subset from 19 features in order to improve the performance of mass detection. Finally, two classifiers PNN (probabilistic neural network) and SVM (support vector machine) are applied and their performances are compared\",\"PeriodicalId\":360097,\"journal\":{\"name\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSSA.2006.250418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用三组与质量纹理相关的特征,即SGLD(空间灰度依赖)、TS(纹理谱)和TFCM(纹理特征编码方法)来描述数字化乳房x光片上质量和正常纹理的特征。接下来,在分类器的测试下,使用SBS(顺序向后选择)、SFS(顺序正向选择)和smfsm(顺序浮动搜索)三种特征选择方法,从19个特征中找出次优子集,以提高质量检测的性能。最后,应用PNN(概率神经网络)和SVM(支持向量机)两种分类器进行分类,并对其性能进行比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Evaluation of classifiers and Feature Selection Methods for Mass Screening in Digitized Mammograms
In this paper, three groups of characteristics related to mass texture are adopted, namely, SGLD (spatial gray level dependence), TS (texture spectrum) and TFCM (texture feature coding method) to describe the characteristics of masses and normal textures on digitized mammograms. Next, under the testing by classifiers, three feature selection methods - SBS (sequential backward selection), SFS (sequential forward selection) and SFSM (sequential floating search method) are used to find out suboptimal subset from 19 features in order to improve the performance of mass detection. Finally, two classifiers PNN (probabilistic neural network) and SVM (support vector machine) are applied and their performances are compared
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信