物联网中基于GRU模型的任务分流

Xiao Zhang, Yuxiong He, Youhuai Wang, Xiaoming Chen, Shi Jin, Yeteng Liang
{"title":"物联网中基于GRU模型的任务分流","authors":"Xiao Zhang, Yuxiong He, Youhuai Wang, Xiaoming Chen, Shi Jin, Yeteng Liang","doi":"10.1145/3573428.3573455","DOIUrl":null,"url":null,"abstract":"With the rapid growth of the Internet of Things (IoTs), edge computing draws greater attention. Task offloading becomes the main part of edge computing which can affect performance. To reduce the tasks time delay and improve the utilization of the edge server, the task offloading problem can be modeled as a decision-making problem for minimizing the time latency and develop a GRU-based model to predict the computational task offloading. We choose a dataset from Google Cluster and offload the top 1000 tasks for comparison. Compering with existing offloading techniques such as total offloading (TOT), random offloading technique (ROT), and deep learning-based offloading technique (DOT), the GRU-based model can save 15.09% time than TOT, 13.46% time than ROT and 4.25% time than DOT while offloading 1000 tasks on an edge computing system in IoT. Experimental result showed that, compared with other techniques, our proposed GRU-based model is able to reduce the delay of tasks effectively, while increasing the number of tasks and enhancing the offloading performance on edge computing system.","PeriodicalId":314698,"journal":{"name":"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task Offloading Based on GRU Model in IoT\",\"authors\":\"Xiao Zhang, Yuxiong He, Youhuai Wang, Xiaoming Chen, Shi Jin, Yeteng Liang\",\"doi\":\"10.1145/3573428.3573455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of the Internet of Things (IoTs), edge computing draws greater attention. Task offloading becomes the main part of edge computing which can affect performance. To reduce the tasks time delay and improve the utilization of the edge server, the task offloading problem can be modeled as a decision-making problem for minimizing the time latency and develop a GRU-based model to predict the computational task offloading. We choose a dataset from Google Cluster and offload the top 1000 tasks for comparison. Compering with existing offloading techniques such as total offloading (TOT), random offloading technique (ROT), and deep learning-based offloading technique (DOT), the GRU-based model can save 15.09% time than TOT, 13.46% time than ROT and 4.25% time than DOT while offloading 1000 tasks on an edge computing system in IoT. Experimental result showed that, compared with other techniques, our proposed GRU-based model is able to reduce the delay of tasks effectively, while increasing the number of tasks and enhancing the offloading performance on edge computing system.\",\"PeriodicalId\":314698,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573428.3573455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573428.3573455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网的快速发展,边缘计算受到越来越多的关注。任务卸载是影响边缘计算性能的主要部分。为了减少任务的时间延迟,提高边缘服务器的利用率,可以将任务卸载问题建模为最小化时间延迟的决策问题,并建立基于gru的计算任务卸载预测模型。我们从Google Cluster中选择一个数据集,卸载前1000个任务进行比较。与现有的总卸载技术(TOT)、随机卸载技术(ROT)和基于深度学习的卸载技术(DOT)相比,基于gru的模型在物联网边缘计算系统中卸载1000个任务时,比TOT节省15.09%的时间,比ROT节省13.46%的时间,比DOT节省4.25%的时间。实验结果表明,与其他技术相比,我们提出的基于gru的模型能够有效地减少任务的延迟,同时增加任务数量,提高边缘计算系统的卸载性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task Offloading Based on GRU Model in IoT
With the rapid growth of the Internet of Things (IoTs), edge computing draws greater attention. Task offloading becomes the main part of edge computing which can affect performance. To reduce the tasks time delay and improve the utilization of the edge server, the task offloading problem can be modeled as a decision-making problem for minimizing the time latency and develop a GRU-based model to predict the computational task offloading. We choose a dataset from Google Cluster and offload the top 1000 tasks for comparison. Compering with existing offloading techniques such as total offloading (TOT), random offloading technique (ROT), and deep learning-based offloading technique (DOT), the GRU-based model can save 15.09% time than TOT, 13.46% time than ROT and 4.25% time than DOT while offloading 1000 tasks on an edge computing system in IoT. Experimental result showed that, compared with other techniques, our proposed GRU-based model is able to reduce the delay of tasks effectively, while increasing the number of tasks and enhancing the offloading performance on edge computing system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信