Ta-Kai Lin, Kuen-Wey Lin, Chang-Hao Chiu, Rung-Bin Lin
{"title":"使用双电源电压的可配置结构化ASIC的逻辑模块和设计方法","authors":"Ta-Kai Lin, Kuen-Wey Lin, Chang-Hao Chiu, Rung-Bin Lin","doi":"10.1145/2591513.2591601","DOIUrl":null,"url":null,"abstract":"This paper presents a via-configurable logic block and a design methodology for realizing fine-grained dual-supply-voltage structured ASIC. Experiments with a 90nm process technology show that, given various timing budgets, our approach can achieve up to 44% energy reduction with 1.6% area overhead on level converters. Compared with GECVS, our approach converts up to 39% more high-supply voltage gates into low-supply voltage gates.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logic block and design methodology for via-configurable structured ASIC using dual supply voltages\",\"authors\":\"Ta-Kai Lin, Kuen-Wey Lin, Chang-Hao Chiu, Rung-Bin Lin\",\"doi\":\"10.1145/2591513.2591601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a via-configurable logic block and a design methodology for realizing fine-grained dual-supply-voltage structured ASIC. Experiments with a 90nm process technology show that, given various timing budgets, our approach can achieve up to 44% energy reduction with 1.6% area overhead on level converters. Compared with GECVS, our approach converts up to 39% more high-supply voltage gates into low-supply voltage gates.\",\"PeriodicalId\":272619,\"journal\":{\"name\":\"ACM Great Lakes Symposium on VLSI\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591513.2591601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Logic block and design methodology for via-configurable structured ASIC using dual supply voltages
This paper presents a via-configurable logic block and a design methodology for realizing fine-grained dual-supply-voltage structured ASIC. Experiments with a 90nm process technology show that, given various timing budgets, our approach can achieve up to 44% energy reduction with 1.6% area overhead on level converters. Compared with GECVS, our approach converts up to 39% more high-supply voltage gates into low-supply voltage gates.