使用碳化硅-氮化铝的MEMS双面触摸电容式压力传感器:快速分析

Sreekanth P K, S. Jindal
{"title":"使用碳化硅-氮化铝的MEMS双面触摸电容式压力传感器:快速分析","authors":"Sreekanth P K, S. Jindal","doi":"10.1109/ICICICT54557.2022.9917749","DOIUrl":null,"url":null,"abstract":"Today, pressure sensors occupy the largest market segment in microsystem devices. This is because of their wide range of applications in both commercial and industrial applications. The two major players in MEMS pressure sensors are capacitive and piezoresistive types. Capacitive pressure sensors operating in touch mode have a higher linearity and operating range and are therefore more suitable. Sensor performance can be further enhanced by etching two back to back traditional touch mode capacitive sensors in one substrate. This paper aims to produce a complete mathematical analysis of the double-sided structure of capacitive pressure sensors using Silicon Carbide-Aluminum Nitride as the primary sensing element. The mathematical analysis bypasses the need for using cumbersome simulation software and gives a fast-analytical technique that can be applied to similar simple designs for modelling. The final MATLAB simulations show a significant improvement in both the sensitivity and capacitance generated on using SiC-AlN over Si-SiO2 for the given design.","PeriodicalId":246214,"journal":{"name":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEMS Double Sided Touch Mode Capacitive Pressure Sensor using Silicon Carbide –Aluminium Nitride: Fast analysis\",\"authors\":\"Sreekanth P K, S. Jindal\",\"doi\":\"10.1109/ICICICT54557.2022.9917749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, pressure sensors occupy the largest market segment in microsystem devices. This is because of their wide range of applications in both commercial and industrial applications. The two major players in MEMS pressure sensors are capacitive and piezoresistive types. Capacitive pressure sensors operating in touch mode have a higher linearity and operating range and are therefore more suitable. Sensor performance can be further enhanced by etching two back to back traditional touch mode capacitive sensors in one substrate. This paper aims to produce a complete mathematical analysis of the double-sided structure of capacitive pressure sensors using Silicon Carbide-Aluminum Nitride as the primary sensing element. The mathematical analysis bypasses the need for using cumbersome simulation software and gives a fast-analytical technique that can be applied to similar simple designs for modelling. The final MATLAB simulations show a significant improvement in both the sensitivity and capacitance generated on using SiC-AlN over Si-SiO2 for the given design.\",\"PeriodicalId\":246214,\"journal\":{\"name\":\"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICICT54557.2022.9917749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICICT54557.2022.9917749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,压力传感器在微系统设备中占据了最大的市场份额。这是因为它们在商业和工业应用中的广泛应用。MEMS压力传感器的两种主要类型是电容式和压阻式。在触摸模式下工作的电容式压力传感器具有更高的线性度和工作范围,因此更适合。通过在一个衬底上蚀刻两个背靠背的传统触摸模式电容传感器,可以进一步提高传感器的性能。本文旨在对以碳化硅-氮化铝为主要传感元件的电容式压力传感器的双面结构进行完整的数学分析。数学分析绕过了使用繁琐的仿真软件的需要,并提供了一种快速分析技术,可以应用于类似的简单设计建模。最后的MATLAB仿真表明,在给定的设计中,使用SiC-AlN比使用Si-SiO2产生的灵敏度和电容都有显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEMS Double Sided Touch Mode Capacitive Pressure Sensor using Silicon Carbide –Aluminium Nitride: Fast analysis
Today, pressure sensors occupy the largest market segment in microsystem devices. This is because of their wide range of applications in both commercial and industrial applications. The two major players in MEMS pressure sensors are capacitive and piezoresistive types. Capacitive pressure sensors operating in touch mode have a higher linearity and operating range and are therefore more suitable. Sensor performance can be further enhanced by etching two back to back traditional touch mode capacitive sensors in one substrate. This paper aims to produce a complete mathematical analysis of the double-sided structure of capacitive pressure sensors using Silicon Carbide-Aluminum Nitride as the primary sensing element. The mathematical analysis bypasses the need for using cumbersome simulation software and gives a fast-analytical technique that can be applied to similar simple designs for modelling. The final MATLAB simulations show a significant improvement in both the sensitivity and capacitance generated on using SiC-AlN over Si-SiO2 for the given design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信