PFAAM是一种基于主动外观模型的粒子滤波算法,具有鲁棒性和精确性

S. Fleck, M. Hoffmann, K. Hunter, A. Schilling
{"title":"PFAAM是一种基于主动外观模型的粒子滤波算法,具有鲁棒性和精确性","authors":"S. Fleck, M. Hoffmann, K. Hunter, A. Schilling","doi":"10.1109/CRV.2007.50","DOIUrl":null,"url":null,"abstract":"Model based tracking is one key component of many systems today, e.g. within video surveillance or human computer interfaces (HCI). Our approach consists of a combination of particle filters (PFs) and active appearance models (AAMs): the PFAAM. It combines the robustness of PFs with the precision of AAMs. Experimental results are given. PFAAM shows superior perfomance compared to both standard AAMs and PFs using AAMs as cues only, i.e. without using a local optimization loop.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"PFAAM An Active Appearance Model based Particle Filter for both Robust and Precise Tracking\",\"authors\":\"S. Fleck, M. Hoffmann, K. Hunter, A. Schilling\",\"doi\":\"10.1109/CRV.2007.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model based tracking is one key component of many systems today, e.g. within video surveillance or human computer interfaces (HCI). Our approach consists of a combination of particle filters (PFs) and active appearance models (AAMs): the PFAAM. It combines the robustness of PFs with the precision of AAMs. Experimental results are given. PFAAM shows superior perfomance compared to both standard AAMs and PFs using AAMs as cues only, i.e. without using a local optimization loop.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于模型的跟踪是当今许多系统的关键组成部分,例如在视频监控或人机接口(HCI)中。我们的方法由粒子滤波器(PFs)和主动外观模型(AAMs)的组合组成:PFAAM。它结合了PFs的鲁棒性和aam的精度。给出了实验结果。与标准aam和仅使用aam作为线索(即不使用局部优化循环)的PFAAM相比,PFAAM表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PFAAM An Active Appearance Model based Particle Filter for both Robust and Precise Tracking
Model based tracking is one key component of many systems today, e.g. within video surveillance or human computer interfaces (HCI). Our approach consists of a combination of particle filters (PFs) and active appearance models (AAMs): the PFAAM. It combines the robustness of PFs with the precision of AAMs. Experimental results are given. PFAAM shows superior perfomance compared to both standard AAMs and PFs using AAMs as cues only, i.e. without using a local optimization loop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信