用于心脏疾病分类的多分辨率样本间和导联间特征误差特征

R. Tripathy, S. Dandapat
{"title":"用于心脏疾病分类的多分辨率样本间和导联间特征误差特征","authors":"R. Tripathy, S. Dandapat","doi":"10.1109/NCC.2016.7561157","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique to estimate diagnostic features in multilead electrocardiogram (MECG) signal. The technique uses the eigen analysis of the significant sub-band matrices of analyzed MECG and synthetic MECG for evaluation of features. The sub-band matrices are obtained using the multiresolution analysis of MECG. For each of the significant sub-band matrix, the inter-sample eigen error (ISEE), the inter-lead eigen error (ILEE) and the singular value error (SVE) features are evaluated. The multilayer perceptron (MLP) neural network and the support vector machine (SVM) classifiers are employed to classify the MECG features into three cardiac diseases (heart muscle disease (HMD), myocardial infarction (MI) and bundle branch block (BBB)) and healthy control. The result reveals that, for MI, HMD and BBB, the proposed technique has better performance with sensitivity values of 99.43%, 99.77% and 97.78%, respectively.","PeriodicalId":279637,"journal":{"name":"2016 Twenty Second National Conference on Communication (NCC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiresolution inter-sample and inter-lead eigen error features for classification of cardiac diseases\",\"authors\":\"R. Tripathy, S. Dandapat\",\"doi\":\"10.1109/NCC.2016.7561157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new technique to estimate diagnostic features in multilead electrocardiogram (MECG) signal. The technique uses the eigen analysis of the significant sub-band matrices of analyzed MECG and synthetic MECG for evaluation of features. The sub-band matrices are obtained using the multiresolution analysis of MECG. For each of the significant sub-band matrix, the inter-sample eigen error (ISEE), the inter-lead eigen error (ILEE) and the singular value error (SVE) features are evaluated. The multilayer perceptron (MLP) neural network and the support vector machine (SVM) classifiers are employed to classify the MECG features into three cardiac diseases (heart muscle disease (HMD), myocardial infarction (MI) and bundle branch block (BBB)) and healthy control. The result reveals that, for MI, HMD and BBB, the proposed technique has better performance with sensitivity values of 99.43%, 99.77% and 97.78%, respectively.\",\"PeriodicalId\":279637,\"journal\":{\"name\":\"2016 Twenty Second National Conference on Communication (NCC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Twenty Second National Conference on Communication (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2016.7561157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Twenty Second National Conference on Communication (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2016.7561157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种估计多导联心电图(MECG)信号诊断特征的新方法。该技术利用分析后的MECG和合成MECG的显著子带矩阵的特征分析来评价特征。利用多分辨率分析得到了子带矩阵。对于每个显著子带矩阵,分别评估了样本间特征误差(ISEE)、导联间特征误差(ILEE)和奇异值误差(SVE)特征。采用多层感知器(MLP)神经网络和支持向量机(SVM)分类器将MECG特征分为心肌疾病(HMD)、心肌梗死(MI)和束支传导阻滞(BBB)三种心脏疾病和健康控制。结果表明,该技术对MI、HMD和BBB的灵敏度分别为99.43%、99.77%和97.78%,具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiresolution inter-sample and inter-lead eigen error features for classification of cardiac diseases
This paper presents a new technique to estimate diagnostic features in multilead electrocardiogram (MECG) signal. The technique uses the eigen analysis of the significant sub-band matrices of analyzed MECG and synthetic MECG for evaluation of features. The sub-band matrices are obtained using the multiresolution analysis of MECG. For each of the significant sub-band matrix, the inter-sample eigen error (ISEE), the inter-lead eigen error (ILEE) and the singular value error (SVE) features are evaluated. The multilayer perceptron (MLP) neural network and the support vector machine (SVM) classifiers are employed to classify the MECG features into three cardiac diseases (heart muscle disease (HMD), myocardial infarction (MI) and bundle branch block (BBB)) and healthy control. The result reveals that, for MI, HMD and BBB, the proposed technique has better performance with sensitivity values of 99.43%, 99.77% and 97.78%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信