J. C. Ortíz-Bayliss, H. Terashima-Marín, P. Ross, Jorge Iván Fuentes-Rosado, Manuel Valenzuela-Rendón
{"title":"硬二值约束满足问题中动态变量排序产生一般超启发式的神经进化方法","authors":"J. C. Ortíz-Bayliss, H. Terashima-Marín, P. Ross, Jorge Iván Fuentes-Rosado, Manuel Valenzuela-Rendón","doi":"10.1145/1569901.1570174","DOIUrl":null,"url":null,"abstract":"This paper introduces a neuro-evolutionary approach to produce hyper-heuristics for the dynamic variable ordering for hard binary constraint satisfaction problems. The model uses a GA to evolve a population of neural networks architectures and parameters. For every cycle in the GA process, the new networks are trained using backpropagation. When the process is over, the best trained individual in the last population of neural networks represents the general hyper-heuristic.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A neuro-evolutionary approach to produce general hyper-heuristics for the dynamic variable ordering in hard binary constraint satisfaction problems\",\"authors\":\"J. C. Ortíz-Bayliss, H. Terashima-Marín, P. Ross, Jorge Iván Fuentes-Rosado, Manuel Valenzuela-Rendón\",\"doi\":\"10.1145/1569901.1570174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a neuro-evolutionary approach to produce hyper-heuristics for the dynamic variable ordering for hard binary constraint satisfaction problems. The model uses a GA to evolve a population of neural networks architectures and parameters. For every cycle in the GA process, the new networks are trained using backpropagation. When the process is over, the best trained individual in the last population of neural networks represents the general hyper-heuristic.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A neuro-evolutionary approach to produce general hyper-heuristics for the dynamic variable ordering in hard binary constraint satisfaction problems
This paper introduces a neuro-evolutionary approach to produce hyper-heuristics for the dynamic variable ordering for hard binary constraint satisfaction problems. The model uses a GA to evolve a population of neural networks architectures and parameters. For every cycle in the GA process, the new networks are trained using backpropagation. When the process is over, the best trained individual in the last population of neural networks represents the general hyper-heuristic.