Yulong Wang, Xingshu Chen, Qixu Wang, Run Yang, Bangzhou Xin
{"title":"基于bilstm的变分自编码器的容器云无监督异常检测","authors":"Yulong Wang, Xingshu Chen, Qixu Wang, Run Yang, Bangzhou Xin","doi":"10.1109/icassp43922.2022.9747341","DOIUrl":null,"url":null,"abstract":"The appearance of container technology has profoundly changed the development and deployment of multi-tier distributed applications. However, the imperfect system resource isolation features and the kernel-sharing mechanism will introduce significant security risks to the container-based cloud. In this paper, we propose a real-time unsupervised anomaly detection system for monitoring system calls in container cloud via BiLSTM-based variational auto-encoder (VAE). Our proposed BiLSTM-based VAE network leverages the generative characteristics of VAE to learn the robust representations of normal patterns by reconstruction probabilities while being sensitive to long-term dependencies. Our evaluations using real-world datasets show that the BiLSTM-based VAE network achieves excellent detection performance without introducing significant running performance overhead to the container platform.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unsupervised Anomaly Detection for Container Cloud Via BILSTM-Based Variational Auto-Encoder\",\"authors\":\"Yulong Wang, Xingshu Chen, Qixu Wang, Run Yang, Bangzhou Xin\",\"doi\":\"10.1109/icassp43922.2022.9747341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The appearance of container technology has profoundly changed the development and deployment of multi-tier distributed applications. However, the imperfect system resource isolation features and the kernel-sharing mechanism will introduce significant security risks to the container-based cloud. In this paper, we propose a real-time unsupervised anomaly detection system for monitoring system calls in container cloud via BiLSTM-based variational auto-encoder (VAE). Our proposed BiLSTM-based VAE network leverages the generative characteristics of VAE to learn the robust representations of normal patterns by reconstruction probabilities while being sensitive to long-term dependencies. Our evaluations using real-world datasets show that the BiLSTM-based VAE network achieves excellent detection performance without introducing significant running performance overhead to the container platform.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised Anomaly Detection for Container Cloud Via BILSTM-Based Variational Auto-Encoder
The appearance of container technology has profoundly changed the development and deployment of multi-tier distributed applications. However, the imperfect system resource isolation features and the kernel-sharing mechanism will introduce significant security risks to the container-based cloud. In this paper, we propose a real-time unsupervised anomaly detection system for monitoring system calls in container cloud via BiLSTM-based variational auto-encoder (VAE). Our proposed BiLSTM-based VAE network leverages the generative characteristics of VAE to learn the robust representations of normal patterns by reconstruction probabilities while being sensitive to long-term dependencies. Our evaluations using real-world datasets show that the BiLSTM-based VAE network achieves excellent detection performance without introducing significant running performance overhead to the container platform.