{"title":"用几何代数形式主义解释双裂实验","authors":"A. Soiguine","doi":"10.22158/asir.v6n1p46","DOIUrl":null,"url":null,"abstract":"The Geometric Algebra formalism opens the door to developing a theory upgrading conventional quantum mechanics. Generalizations, stemming from implementation of complex numbers as geometrically feasible objects in three dimensions; unambiguous definition of states, observables, measurements bring into reality clear explanations of conventional weird quantum mechanical features, particularly the results of double split experiments where particles create diffraction patterns inherent to wave diffraction. This weirdness of the double split experiment is milestone of all further difficulties in interpretation of quantum mechanics.","PeriodicalId":356167,"journal":{"name":"Applied Science and Innovative Research","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explaining Double Split Experiment with Geometrical Algebra Formalism\",\"authors\":\"A. Soiguine\",\"doi\":\"10.22158/asir.v6n1p46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Geometric Algebra formalism opens the door to developing a theory upgrading conventional quantum mechanics. Generalizations, stemming from implementation of complex numbers as geometrically feasible objects in three dimensions; unambiguous definition of states, observables, measurements bring into reality clear explanations of conventional weird quantum mechanical features, particularly the results of double split experiments where particles create diffraction patterns inherent to wave diffraction. This weirdness of the double split experiment is milestone of all further difficulties in interpretation of quantum mechanics.\",\"PeriodicalId\":356167,\"journal\":{\"name\":\"Applied Science and Innovative Research\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Innovative Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22158/asir.v6n1p46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Innovative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22158/asir.v6n1p46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Explaining Double Split Experiment with Geometrical Algebra Formalism
The Geometric Algebra formalism opens the door to developing a theory upgrading conventional quantum mechanics. Generalizations, stemming from implementation of complex numbers as geometrically feasible objects in three dimensions; unambiguous definition of states, observables, measurements bring into reality clear explanations of conventional weird quantum mechanical features, particularly the results of double split experiments where particles create diffraction patterns inherent to wave diffraction. This weirdness of the double split experiment is milestone of all further difficulties in interpretation of quantum mechanics.