{"title":"$p$-进阶乘的推广","authors":"R. Belhadef","doi":"10.53570/jnt.1089241","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a new approach of the p-adic analogue of Roman factorial, called p-adic Roman factorial. We define this new concept and demonstrate its properties and some properties of p-adic factorial.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalization of $p$-Adic Factorial\",\"authors\":\"R. Belhadef\",\"doi\":\"10.53570/jnt.1089241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish a new approach of the p-adic analogue of Roman factorial, called p-adic Roman factorial. We define this new concept and demonstrate its properties and some properties of p-adic factorial.\",\"PeriodicalId\":347850,\"journal\":{\"name\":\"Journal of New Theory\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53570/jnt.1089241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1089241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we establish a new approach of the p-adic analogue of Roman factorial, called p-adic Roman factorial. We define this new concept and demonstrate its properties and some properties of p-adic factorial.