{"title":"进进空间的例子","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.7","DOIUrl":null,"url":null,"abstract":"This chapter discusses various examples of adic spaces. These examples include the adic closed unit disc; the adic affine line; the closure of the adic closed unit disc in the adic affine line; the open unit disc; the punctured open unit disc; and the constant adic space associated to a profinite set. The chapter focuses on one example: the adic open unit disc over Zp. The adic spectrum Spa Zp consists of two points, a special point and a generic point. The chapter then studies the structure of analytic points. It also clarifies the relations between analytic rings and Tate rings.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examples of adic spaces\",\"authors\":\"P. Scholze, Jared Weinstein\",\"doi\":\"10.2307/j.ctvs32rc9.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter discusses various examples of adic spaces. These examples include the adic closed unit disc; the adic affine line; the closure of the adic closed unit disc in the adic affine line; the open unit disc; the punctured open unit disc; and the constant adic space associated to a profinite set. The chapter focuses on one example: the adic open unit disc over Zp. The adic spectrum Spa Zp consists of two points, a special point and a generic point. The chapter then studies the structure of analytic points. It also clarifies the relations between analytic rings and Tate rings.\",\"PeriodicalId\":270009,\"journal\":{\"name\":\"Berkeley Lectures on p-adic Geometry\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Berkeley Lectures on p-adic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvs32rc9.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter discusses various examples of adic spaces. These examples include the adic closed unit disc; the adic affine line; the closure of the adic closed unit disc in the adic affine line; the open unit disc; the punctured open unit disc; and the constant adic space associated to a profinite set. The chapter focuses on one example: the adic open unit disc over Zp. The adic spectrum Spa Zp consists of two points, a special point and a generic point. The chapter then studies the structure of analytic points. It also clarifies the relations between analytic rings and Tate rings.