H. Nubli, Fahri Setyo Utomo, H. Diatmaja, A. Prabowo, U. Ubaidillah, D. Susilo, W. Wibowo, T. Muttaqie, Fajar Budi Laksono
{"title":"班加万无人驾驶(UV)机器船的设计:Mandakini Neo","authors":"H. Nubli, Fahri Setyo Utomo, H. Diatmaja, A. Prabowo, U. Ubaidillah, D. Susilo, W. Wibowo, T. Muttaqie, Fajar Budi Laksono","doi":"10.20961/mekanika.v21i2.61624","DOIUrl":null,"url":null,"abstract":"Mandakini Neo is an autonomous vehicle that was designed and built by the students of the Universitas Sebelas Maret, which was included in the Bengawan Unmanned Vehicle (UV) Roboboat Team to compete in the annual international Roboboat competition of 2021. This competition requires participants to complete several missions; one of the main missions is to move through two gates made from four poles using full automatic navigation, in order to continue on with the other missions. To complete the course, we used Pixhawk and GPS to allow the ship to run automatically, while minimizing the ship’s movement tolerance. The use of Mission Planner software for monitoring, and also for color and shape image processing to help with the reading of objects, along with a sensor fitted on the ship, allowed the mission to be completed. Mandakini Neo was made with the capacity, speed, and comfort of the ship in mind, as well as the ship’s hydrodynamic performance, stability, volume, structural integrity, and construction cost. Following its development we conducted tests of stability, maneuverability, and seakeeping in order to achieve the smallest possible resistance rate; for this purpose, we used the Savitsky method. The manufacture of the ship also required the choosing of the material, the use of the sensor, and also selection of an appropriate system. Finally, the design that we developed was a ship with a catamaran hull type, for which the dimensions had already been calculated, and the proper materials decided, and simple electrical components were able to be obtained for the sensor and the system.","PeriodicalId":356258,"journal":{"name":"Mekanika: Majalah Ilmiah Mekanika","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design of the Bengawan Unmanned Vehicle (UV) Roboboat: Mandakini Neo\",\"authors\":\"H. Nubli, Fahri Setyo Utomo, H. Diatmaja, A. Prabowo, U. Ubaidillah, D. Susilo, W. Wibowo, T. Muttaqie, Fajar Budi Laksono\",\"doi\":\"10.20961/mekanika.v21i2.61624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mandakini Neo is an autonomous vehicle that was designed and built by the students of the Universitas Sebelas Maret, which was included in the Bengawan Unmanned Vehicle (UV) Roboboat Team to compete in the annual international Roboboat competition of 2021. This competition requires participants to complete several missions; one of the main missions is to move through two gates made from four poles using full automatic navigation, in order to continue on with the other missions. To complete the course, we used Pixhawk and GPS to allow the ship to run automatically, while minimizing the ship’s movement tolerance. The use of Mission Planner software for monitoring, and also for color and shape image processing to help with the reading of objects, along with a sensor fitted on the ship, allowed the mission to be completed. Mandakini Neo was made with the capacity, speed, and comfort of the ship in mind, as well as the ship’s hydrodynamic performance, stability, volume, structural integrity, and construction cost. Following its development we conducted tests of stability, maneuverability, and seakeeping in order to achieve the smallest possible resistance rate; for this purpose, we used the Savitsky method. The manufacture of the ship also required the choosing of the material, the use of the sensor, and also selection of an appropriate system. Finally, the design that we developed was a ship with a catamaran hull type, for which the dimensions had already been calculated, and the proper materials decided, and simple electrical components were able to be obtained for the sensor and the system.\",\"PeriodicalId\":356258,\"journal\":{\"name\":\"Mekanika: Majalah Ilmiah Mekanika\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mekanika: Majalah Ilmiah Mekanika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20961/mekanika.v21i2.61624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekanika: Majalah Ilmiah Mekanika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/mekanika.v21i2.61624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of the Bengawan Unmanned Vehicle (UV) Roboboat: Mandakini Neo
Mandakini Neo is an autonomous vehicle that was designed and built by the students of the Universitas Sebelas Maret, which was included in the Bengawan Unmanned Vehicle (UV) Roboboat Team to compete in the annual international Roboboat competition of 2021. This competition requires participants to complete several missions; one of the main missions is to move through two gates made from four poles using full automatic navigation, in order to continue on with the other missions. To complete the course, we used Pixhawk and GPS to allow the ship to run automatically, while minimizing the ship’s movement tolerance. The use of Mission Planner software for monitoring, and also for color and shape image processing to help with the reading of objects, along with a sensor fitted on the ship, allowed the mission to be completed. Mandakini Neo was made with the capacity, speed, and comfort of the ship in mind, as well as the ship’s hydrodynamic performance, stability, volume, structural integrity, and construction cost. Following its development we conducted tests of stability, maneuverability, and seakeeping in order to achieve the smallest possible resistance rate; for this purpose, we used the Savitsky method. The manufacture of the ship also required the choosing of the material, the use of the sensor, and also selection of an appropriate system. Finally, the design that we developed was a ship with a catamaran hull type, for which the dimensions had already been calculated, and the proper materials decided, and simple electrical components were able to be obtained for the sensor and the system.