使用视觉词汇表和几何约束的智能内容检索

E. Spyrou, Yannis Kalantidis, Giorgos Tolias, Phivos Mylonas, S. Kollias
{"title":"使用视觉词汇表和几何约束的智能内容检索","authors":"E. Spyrou, Yannis Kalantidis, Giorgos Tolias, Phivos Mylonas, S. Kollias","doi":"10.1109/FUZZY.2010.5584000","DOIUrl":null,"url":null,"abstract":"During the last decades multimedia processing has emerged as an important technology to retrieve content based on similar data. Moreover, recent developments in the fields of high definition (HD) multimedia content and personal content collections (personal camcorders and digital still image cameras) tend to generate a huge volume of multimedia data everyday. Thus, the need for a meaningful, quick organization and access to generated content is now more than necessary; however, it still remains a rather difficult problem to be tackled both by humans and computers. In this paper we propose an intelligent extension of traditional image analysis methodologies towards more efficient digital content retrieval. The main idea is to extend local feature extraction methodologies by introducing additional geometrical constraints in the process. The proposed approach is tested and evaluated on a number of publicly available image datasets and results are very promising.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intelligent content retrieval using a visual vocabulary and geometric constraints\",\"authors\":\"E. Spyrou, Yannis Kalantidis, Giorgos Tolias, Phivos Mylonas, S. Kollias\",\"doi\":\"10.1109/FUZZY.2010.5584000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last decades multimedia processing has emerged as an important technology to retrieve content based on similar data. Moreover, recent developments in the fields of high definition (HD) multimedia content and personal content collections (personal camcorders and digital still image cameras) tend to generate a huge volume of multimedia data everyday. Thus, the need for a meaningful, quick organization and access to generated content is now more than necessary; however, it still remains a rather difficult problem to be tackled both by humans and computers. In this paper we propose an intelligent extension of traditional image analysis methodologies towards more efficient digital content retrieval. The main idea is to extend local feature extraction methodologies by introducing additional geometrical constraints in the process. The proposed approach is tested and evaluated on a number of publicly available image datasets and results are very promising.\",\"PeriodicalId\":377799,\"journal\":{\"name\":\"International Conference on Fuzzy Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2010.5584000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的几十年里,多媒体处理已经成为一种基于相似数据检索内容的重要技术。此外,最近在高清晰度(HD)多媒体内容和个人内容收藏(个人摄像机和数字静止图像相机)领域的发展,每天都会产生大量的多媒体数据。因此,现在对有意义的、快速的组织和访问生成内容的需求是非常必要的;然而,这仍然是一个相当困难的问题,需要人类和计算机共同解决。在本文中,我们提出了传统图像分析方法的智能扩展,以实现更高效的数字内容检索。主要思想是通过在过程中引入额外的几何约束来扩展局部特征提取方法。所提出的方法在许多公开可用的图像数据集上进行了测试和评估,结果非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent content retrieval using a visual vocabulary and geometric constraints
During the last decades multimedia processing has emerged as an important technology to retrieve content based on similar data. Moreover, recent developments in the fields of high definition (HD) multimedia content and personal content collections (personal camcorders and digital still image cameras) tend to generate a huge volume of multimedia data everyday. Thus, the need for a meaningful, quick organization and access to generated content is now more than necessary; however, it still remains a rather difficult problem to be tackled both by humans and computers. In this paper we propose an intelligent extension of traditional image analysis methodologies towards more efficient digital content retrieval. The main idea is to extend local feature extraction methodologies by introducing additional geometrical constraints in the process. The proposed approach is tested and evaluated on a number of publicly available image datasets and results are very promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信