高压中性束喷射器栅格不同冷却液的评价

P. Agostinetti, M. Boldrin, F. Fantini
{"title":"高压中性束喷射器栅格不同冷却液的评价","authors":"P. Agostinetti, M. Boldrin, F. Fantini","doi":"10.1109/THETA.2008.5167159","DOIUrl":null,"url":null,"abstract":"The Neutral Beam Injectors (NBIs) of the ITER experimental fusion reactor are designed to accelerate Deuterium negative ions with energy up to 1 MeV and current up to 40 A. The accelerator grids must be designed to operate at high voltages and to withstand high power densities (in the order of some tens of MW m-2). They must maintain a proper alignment in all the foreseen operating scenarios, in order to obtain good beam optics, so the thermo-mechanical deformations must be maintained at very low values. Further requirements come from the need of keeping under control the maximum surface temperature in copper. With these requirements, the cooling of the grids represents a significantly critical aspect of the NBI design. Coolant properties have to satisfy high resistivity requirements and to be appropriate for the removal of high heat loads. The cooling circuits must match with the beam optic geometry and the space constrains severely affect the coolant distribution. This paper presents some studies of the grid cooling circuits design carried out with Computational Fluid Dynamics (CFD) numerical simulations and analytical methods. Cooling performances for different cooling fluids (water and dielectric coolants) have been investigated.","PeriodicalId":414963,"journal":{"name":"2008 Second International Conference on Thermal Issues in Emerging Technologies","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of different colling fluids for high-voltage Neutral Beam Injector grids\",\"authors\":\"P. Agostinetti, M. Boldrin, F. Fantini\",\"doi\":\"10.1109/THETA.2008.5167159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Neutral Beam Injectors (NBIs) of the ITER experimental fusion reactor are designed to accelerate Deuterium negative ions with energy up to 1 MeV and current up to 40 A. The accelerator grids must be designed to operate at high voltages and to withstand high power densities (in the order of some tens of MW m-2). They must maintain a proper alignment in all the foreseen operating scenarios, in order to obtain good beam optics, so the thermo-mechanical deformations must be maintained at very low values. Further requirements come from the need of keeping under control the maximum surface temperature in copper. With these requirements, the cooling of the grids represents a significantly critical aspect of the NBI design. Coolant properties have to satisfy high resistivity requirements and to be appropriate for the removal of high heat loads. The cooling circuits must match with the beam optic geometry and the space constrains severely affect the coolant distribution. This paper presents some studies of the grid cooling circuits design carried out with Computational Fluid Dynamics (CFD) numerical simulations and analytical methods. Cooling performances for different cooling fluids (water and dielectric coolants) have been investigated.\",\"PeriodicalId\":414963,\"journal\":{\"name\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Thermal Issues in Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THETA.2008.5167159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Thermal Issues in Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THETA.2008.5167159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

ITER实验核聚变反应堆的中性束注入器(NBIs)设计用于加速能量高达1 MeV、电流高达40 A的氘负离子。加速器电网必须设计成在高电压下运行,并承受高功率密度(大约几十兆瓦m-2)。为了获得良好的光束光学,它们必须在所有可预见的操作场景中保持适当的对准,因此热机械变形必须保持在非常低的值。进一步的要求来自于需要控制铜的最高表面温度。根据这些要求,电网的冷却是NBI设计的一个重要方面。冷却剂的性能必须满足高电阻率要求,并适合于去除高热负荷。冷却回路必须与光束的几何形状相匹配,空间限制严重影响冷却剂的分布。本文采用计算流体力学(CFD)数值模拟和分析方法对电网冷却回路设计进行了研究。研究了不同冷却流体(水和介质冷却剂)的冷却性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of different colling fluids for high-voltage Neutral Beam Injector grids
The Neutral Beam Injectors (NBIs) of the ITER experimental fusion reactor are designed to accelerate Deuterium negative ions with energy up to 1 MeV and current up to 40 A. The accelerator grids must be designed to operate at high voltages and to withstand high power densities (in the order of some tens of MW m-2). They must maintain a proper alignment in all the foreseen operating scenarios, in order to obtain good beam optics, so the thermo-mechanical deformations must be maintained at very low values. Further requirements come from the need of keeping under control the maximum surface temperature in copper. With these requirements, the cooling of the grids represents a significantly critical aspect of the NBI design. Coolant properties have to satisfy high resistivity requirements and to be appropriate for the removal of high heat loads. The cooling circuits must match with the beam optic geometry and the space constrains severely affect the coolant distribution. This paper presents some studies of the grid cooling circuits design carried out with Computational Fluid Dynamics (CFD) numerical simulations and analytical methods. Cooling performances for different cooling fluids (water and dielectric coolants) have been investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信