{"title":"ALLNODE-RT:实时、容错网络","authors":"H.T. Olnowich, D. Kirk","doi":"10.1109/WPDRTS.1994.365631","DOIUrl":null,"url":null,"abstract":"This paper presents a proposed multi-stage switching network for real-time systems which features: priority scheduling scalability, high bandwidth, low latency, fault tolerance, and breaking of lower priority connections. The fault-tolerant approach presented gives continuous availability in the presence of many failures, and the correction time is so rapid that real-time messages can be delivered before their deadlines expire. This is possible because the ALLNODE-RT Network contains numerous alternate paths between any two nodes. The ALLNODE-RT hardware searches for an available, non-failed path and guarantees the meeting of a deadline by dynamically increasing priority as the deadline approaches and breaking lower priority connections. The network is based on the existing ALLNODE Switch concept. The modifications required to evolve to a real-time switch are described, as well as the fault tolerance concepts.<<ETX>>","PeriodicalId":275053,"journal":{"name":"Second Workshop on Parallel and Distributed Real-Time Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ALLNODE-RT: a real time, fault tolerant network\",\"authors\":\"H.T. Olnowich, D. Kirk\",\"doi\":\"10.1109/WPDRTS.1994.365631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a proposed multi-stage switching network for real-time systems which features: priority scheduling scalability, high bandwidth, low latency, fault tolerance, and breaking of lower priority connections. The fault-tolerant approach presented gives continuous availability in the presence of many failures, and the correction time is so rapid that real-time messages can be delivered before their deadlines expire. This is possible because the ALLNODE-RT Network contains numerous alternate paths between any two nodes. The ALLNODE-RT hardware searches for an available, non-failed path and guarantees the meeting of a deadline by dynamically increasing priority as the deadline approaches and breaking lower priority connections. The network is based on the existing ALLNODE Switch concept. The modifications required to evolve to a real-time switch are described, as well as the fault tolerance concepts.<<ETX>>\",\"PeriodicalId\":275053,\"journal\":{\"name\":\"Second Workshop on Parallel and Distributed Real-Time Systems\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second Workshop on Parallel and Distributed Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPDRTS.1994.365631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second Workshop on Parallel and Distributed Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPDRTS.1994.365631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a proposed multi-stage switching network for real-time systems which features: priority scheduling scalability, high bandwidth, low latency, fault tolerance, and breaking of lower priority connections. The fault-tolerant approach presented gives continuous availability in the presence of many failures, and the correction time is so rapid that real-time messages can be delivered before their deadlines expire. This is possible because the ALLNODE-RT Network contains numerous alternate paths between any two nodes. The ALLNODE-RT hardware searches for an available, non-failed path and guarantees the meeting of a deadline by dynamically increasing priority as the deadline approaches and breaking lower priority connections. The network is based on the existing ALLNODE Switch concept. The modifications required to evolve to a real-time switch are described, as well as the fault tolerance concepts.<>