基于相似度的基于查询的多文档摘要,使用众包和人工构建的词汇语义资源

Muhidin A. Mohamed, M. Oussalah
{"title":"基于相似度的基于查询的多文档摘要,使用众包和人工构建的词汇语义资源","authors":"Muhidin A. Mohamed, M. Oussalah","doi":"10.1109/Trustcom.2015.565","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach for an extractive query focused multi-document summarization which stands on an enhanced knowledge-based short text semantic similarity measures. We incorporate WordNet Taxonomy with Categorial Variation Database (CatVar) and Morphosemantic Links to determine query similarity with sentences and intra-sentences similarities. Besides, we enrich WordNet-derived similarity with named entity semantic relatedness inferred from Wikipedia and underpinned by Normalized Google Distance. We show that our summarizer built primarily on such an improved semantic similarity measure to model relevance, centrality and diversity factors outperforms the best-performing relevant DUC systems and recent closely related studies in at least one or more of the investigated ROUGE metrics. An anti-redundancy mechanism is augmented with the proposed summarizer design using Maximum Marginal Relevance algorithm -MMR.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"152 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Similarity-Based Query-Focused Multi-document Summarization Using Crowdsourced and Manually-built Lexical-Semantic Resources\",\"authors\":\"Muhidin A. Mohamed, M. Oussalah\",\"doi\":\"10.1109/Trustcom.2015.565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an approach for an extractive query focused multi-document summarization which stands on an enhanced knowledge-based short text semantic similarity measures. We incorporate WordNet Taxonomy with Categorial Variation Database (CatVar) and Morphosemantic Links to determine query similarity with sentences and intra-sentences similarities. Besides, we enrich WordNet-derived similarity with named entity semantic relatedness inferred from Wikipedia and underpinned by Normalized Google Distance. We show that our summarizer built primarily on such an improved semantic similarity measure to model relevance, centrality and diversity factors outperforms the best-performing relevant DUC systems and recent closely related studies in at least one or more of the investigated ROUGE metrics. An anti-redundancy mechanism is augmented with the proposed summarizer design using Maximum Marginal Relevance algorithm -MMR.\",\"PeriodicalId\":277092,\"journal\":{\"name\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"volume\":\"152 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Trustcom.2015.565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom.2015.565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于增强的基于知识的短文本语义相似度度量的多文档摘要抽取查询方法。我们将WordNet分类法与类别变异数据库(CatVar)和词形语义链接结合起来,确定查询与句子和句子内部的相似度。此外,我们从维基百科中推断出命名实体语义相关性,并以标准化谷歌距离为基础,丰富了wordnet衍生的相似度。我们表明,我们的摘要器主要建立在这样一种改进的语义相似性度量上,以建模相关性、中位性和多样性因素,在至少一个或多个被调查的ROUGE度量中,优于表现最佳的相关DUC系统和最近密切相关的研究。利用最大边际关联算法(mmr)增强了摘要器的抗冗余机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity-Based Query-Focused Multi-document Summarization Using Crowdsourced and Manually-built Lexical-Semantic Resources
In this paper we present an approach for an extractive query focused multi-document summarization which stands on an enhanced knowledge-based short text semantic similarity measures. We incorporate WordNet Taxonomy with Categorial Variation Database (CatVar) and Morphosemantic Links to determine query similarity with sentences and intra-sentences similarities. Besides, we enrich WordNet-derived similarity with named entity semantic relatedness inferred from Wikipedia and underpinned by Normalized Google Distance. We show that our summarizer built primarily on such an improved semantic similarity measure to model relevance, centrality and diversity factors outperforms the best-performing relevant DUC systems and recent closely related studies in at least one or more of the investigated ROUGE metrics. An anti-redundancy mechanism is augmented with the proposed summarizer design using Maximum Marginal Relevance algorithm -MMR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信