简单赫尔维茨数的任意基曲线的量子曲线

Xiaojun Liu, M. Mulase, Adam J. Sorkin
{"title":"简单赫尔维茨数的任意基曲线的量子曲线","authors":"Xiaojun Liu, M. Mulase, Adam J. Sorkin","doi":"10.1090/PSPUM/100/01769","DOIUrl":null,"url":null,"abstract":"Various generating functions of simple Hurwitz numbers of the projective line are known to satisfy many properties. They include a heat equation, the Eynard-Orantin topological recursion, an infinite-order differential equation called a quantum curve equation, and a Schroedinger like partial differential equation. In this paper we generalize these properties to simple Hurwitz numbers with an arbitrary base curve.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Quantum curves for simple Hurwitz numbers of\\n an arbitrary base curve\",\"authors\":\"Xiaojun Liu, M. Mulase, Adam J. Sorkin\",\"doi\":\"10.1090/PSPUM/100/01769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various generating functions of simple Hurwitz numbers of the projective line are known to satisfy many properties. They include a heat equation, the Eynard-Orantin topological recursion, an infinite-order differential equation called a quantum curve equation, and a Schroedinger like partial differential equation. In this paper we generalize these properties to simple Hurwitz numbers with an arbitrary base curve.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/100/01769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/100/01769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

已知投影线的简单赫维茨数的各种生成函数满足许多性质。它们包括一个热方程,Eynard-Orantin拓扑递推,一个被称为量子曲线方程的无限阶微分方程,以及一个类似薛定谔的偏微分方程。本文将这些性质推广到具有任意基曲线的简单Hurwitz数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum curves for simple Hurwitz numbers of an arbitrary base curve
Various generating functions of simple Hurwitz numbers of the projective line are known to satisfy many properties. They include a heat equation, the Eynard-Orantin topological recursion, an infinite-order differential equation called a quantum curve equation, and a Schroedinger like partial differential equation. In this paper we generalize these properties to simple Hurwitz numbers with an arbitrary base curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信