分布式实时锁定协议中的阻塞优化

Björn B. Brandenburg
{"title":"分布式实时锁定协议中的阻塞优化","authors":"Björn B. Brandenburg","doi":"10.4230/LITES-v001-i002-a001","DOIUrl":null,"url":null,"abstract":"Lower and upper bounds on the maximum priority inversion blocking (pi-blocking) that is generally unavoidable in distributed multiprocessor real-time locking protocols (where resources may be accessed only from specific synchronization processors) are established. Prior work on suspension-based shared-memory multiprocessor locking protocols (which require resources to be accessible from all processors) has established asymptotically tight bounds of Ω(m) and Ω(n) maximum pi-blocking under suspension-oblivious and suspension-aware analysis, respectively, where m denotes the total number of processors and n denotes the number of tasks. In this paper, it is shown that, in the case of distributed semaphore protocols, there exist two different task allocation scenarios that give rise to distinct lower bounds. In the case of co-hosted task allocation, where application tasks may also be assigned to synchronization processors (i.e., processors hosting critical sections), Ω(Φ · n) maximum pi-blocking is unavoidable for some tasks under any locking protocol under both suspension-aware and suspension-oblivious schedulability analysis, where Φ denotes the ratio of the maximum response time to the shortest period. In contrast, in the case of disjoint task allocation (i.e., if application tasks may not be assigned to synchronization processors), only Ω(m) and Ω(n) maximum pi-blocking is fundamentally unavoidable under suspension-oblivious and suspension-aware analysis, respectively, as in the shared-memory case. These bounds are shown to be asymptotically tight with the construction of two new distributed real-time locking protocols that ensure O(m) and O(n) maximum pi-blocking under suspension-oblivious and suspension-aware analysis, respectively.","PeriodicalId":376325,"journal":{"name":"Leibniz Trans. Embed. Syst.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Blocking Optimality in Distributed Real-Time Locking Protocols\",\"authors\":\"Björn B. Brandenburg\",\"doi\":\"10.4230/LITES-v001-i002-a001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lower and upper bounds on the maximum priority inversion blocking (pi-blocking) that is generally unavoidable in distributed multiprocessor real-time locking protocols (where resources may be accessed only from specific synchronization processors) are established. Prior work on suspension-based shared-memory multiprocessor locking protocols (which require resources to be accessible from all processors) has established asymptotically tight bounds of Ω(m) and Ω(n) maximum pi-blocking under suspension-oblivious and suspension-aware analysis, respectively, where m denotes the total number of processors and n denotes the number of tasks. In this paper, it is shown that, in the case of distributed semaphore protocols, there exist two different task allocation scenarios that give rise to distinct lower bounds. In the case of co-hosted task allocation, where application tasks may also be assigned to synchronization processors (i.e., processors hosting critical sections), Ω(Φ · n) maximum pi-blocking is unavoidable for some tasks under any locking protocol under both suspension-aware and suspension-oblivious schedulability analysis, where Φ denotes the ratio of the maximum response time to the shortest period. In contrast, in the case of disjoint task allocation (i.e., if application tasks may not be assigned to synchronization processors), only Ω(m) and Ω(n) maximum pi-blocking is fundamentally unavoidable under suspension-oblivious and suspension-aware analysis, respectively, as in the shared-memory case. These bounds are shown to be asymptotically tight with the construction of two new distributed real-time locking protocols that ensure O(m) and O(n) maximum pi-blocking under suspension-oblivious and suspension-aware analysis, respectively.\",\"PeriodicalId\":376325,\"journal\":{\"name\":\"Leibniz Trans. Embed. Syst.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leibniz Trans. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LITES-v001-i002-a001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leibniz Trans. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LITES-v001-i002-a001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

建立了分布式多处理器实时锁定协议(只能从特定同步处理器访问资源)中不可避免的最大优先级反转阻塞(pi-blocking)的下界和上界。先前关于基于挂起的共享内存多处理器锁定协议(要求所有处理器都可以访问资源)的工作已经分别在挂起无关和挂起感知分析下建立了Ω(m)和Ω(n)最大pi阻塞的渐进紧边界,其中m表示处理器总数,n表示任务数量。本文表明,在分布式信号量协议的情况下,存在两种不同的任务分配方案,它们会产生不同的下界。在共同托管任务分配的情况下,应用程序任务也可以分配给同步处理器(即,托管关键段的处理器),在挂起感知和挂起无关的可调度性分析下,对于任何锁定协议下的某些任务,Ω(Φ·n)最大pi阻塞是不可避免的,其中Φ表示最大响应时间与最短周期的比率。相反,在任务分配不一致的情况下(即,如果应用程序任务可能不会分配给同步处理器),在挂起无关和挂起感知分析中,只有Ω(m)和Ω(n)最大pi阻塞基本上是不可避免的,就像共享内存的情况一样。通过构建两种新的分布式实时锁定协议,这些边界被证明是渐近紧密的,这两种协议分别确保在悬挂无关和悬挂感知分析下O(m)和O(n)最大pi阻塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blocking Optimality in Distributed Real-Time Locking Protocols
Lower and upper bounds on the maximum priority inversion blocking (pi-blocking) that is generally unavoidable in distributed multiprocessor real-time locking protocols (where resources may be accessed only from specific synchronization processors) are established. Prior work on suspension-based shared-memory multiprocessor locking protocols (which require resources to be accessible from all processors) has established asymptotically tight bounds of Ω(m) and Ω(n) maximum pi-blocking under suspension-oblivious and suspension-aware analysis, respectively, where m denotes the total number of processors and n denotes the number of tasks. In this paper, it is shown that, in the case of distributed semaphore protocols, there exist two different task allocation scenarios that give rise to distinct lower bounds. In the case of co-hosted task allocation, where application tasks may also be assigned to synchronization processors (i.e., processors hosting critical sections), Ω(Φ · n) maximum pi-blocking is unavoidable for some tasks under any locking protocol under both suspension-aware and suspension-oblivious schedulability analysis, where Φ denotes the ratio of the maximum response time to the shortest period. In contrast, in the case of disjoint task allocation (i.e., if application tasks may not be assigned to synchronization processors), only Ω(m) and Ω(n) maximum pi-blocking is fundamentally unavoidable under suspension-oblivious and suspension-aware analysis, respectively, as in the shared-memory case. These bounds are shown to be asymptotically tight with the construction of two new distributed real-time locking protocols that ensure O(m) and O(n) maximum pi-blocking under suspension-oblivious and suspension-aware analysis, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信