直接乙醇燃料电池的建模和仿真:电化学反应和质量传递的考虑

Christopher Janting LIEW CHALU
{"title":"直接乙醇燃料电池的建模和仿真:电化学反应和质量传递的考虑","authors":"Christopher Janting LIEW CHALU","doi":"10.33736/jaspe.4592.2022","DOIUrl":null,"url":null,"abstract":"Mathematical modelling was developed for direct ethanol fuel cell (DEFC) by considering electrochemical reactions and mass transport. The model was validated against experimental data from previous research and showed good agreement with the data. The developed mathematical modelling for this research was based on the Butler-Volmer equation, Tafel equation and Fick’s law. The model was used to investigate parameters such as ethanol concentration and cell operating temperature. The developed mathematical model simulated the data from previous research. Ethanol concentration played a vital role to achieve high-performance DEFC. The higher the ethanol concentration, the higher current could be generated in DEFC. Nonetheless, the higher the usage of the ethanol concentration, the higher the ethanol crossover might occur. The highest current density produced from the fuel cell was at 21.48 mA cm-2, for 2M of ethanol concentration. Operating temperature also affected cell performance. The higher the operating temperature, the higher power density could be generated—the peak power density of 5.7 mWcm-2 at 75 oC with 2M of ethanol. As for ethanol crossover, the highest ethanol crossover was at 12.4 mol m-3 for 3M concentration of ethanol. It proved that higher ethanol concentration led to higher ethanol crossover.","PeriodicalId":159511,"journal":{"name":"Journal of Applied Science & Process Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling and Simulation of A Direct Ethanol Fuel Cell: Electrochemical Reactions and Mass Transport Consideration\",\"authors\":\"Christopher Janting LIEW CHALU\",\"doi\":\"10.33736/jaspe.4592.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical modelling was developed for direct ethanol fuel cell (DEFC) by considering electrochemical reactions and mass transport. The model was validated against experimental data from previous research and showed good agreement with the data. The developed mathematical modelling for this research was based on the Butler-Volmer equation, Tafel equation and Fick’s law. The model was used to investigate parameters such as ethanol concentration and cell operating temperature. The developed mathematical model simulated the data from previous research. Ethanol concentration played a vital role to achieve high-performance DEFC. The higher the ethanol concentration, the higher current could be generated in DEFC. Nonetheless, the higher the usage of the ethanol concentration, the higher the ethanol crossover might occur. The highest current density produced from the fuel cell was at 21.48 mA cm-2, for 2M of ethanol concentration. Operating temperature also affected cell performance. The higher the operating temperature, the higher power density could be generated—the peak power density of 5.7 mWcm-2 at 75 oC with 2M of ethanol. As for ethanol crossover, the highest ethanol crossover was at 12.4 mol m-3 for 3M concentration of ethanol. It proved that higher ethanol concentration led to higher ethanol crossover.\",\"PeriodicalId\":159511,\"journal\":{\"name\":\"Journal of Applied Science & Process Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Science & Process Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33736/jaspe.4592.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Science & Process Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33736/jaspe.4592.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑电化学反应和质量传递,建立了直接乙醇燃料电池(DEFC)的数学模型。该模型与前人研究的实验数据进行了验证,结果与实验数据吻合较好。本研究开发的数学模型是基于Butler-Volmer方程、Tafel方程和Fick定律。该模型用于考察乙醇浓度和细胞工作温度等参数。开发的数学模型模拟了以前研究的数据。乙醇浓度对实现高性能DEFC起着至关重要的作用。乙醇浓度越高,DEFC产生的电流越大。然而,乙醇浓度越高,乙醇交叉越容易发生。当乙醇浓度为2M时,燃料电池产生的最高电流密度为21.48 mA cm-2。工作温度也会影响电池的性能。工作温度越高,产生的功率密度越高,在75℃,乙醇浓度为2M时,功率密度峰值为5.7 mWcm-2。在乙醇交叉方面,当乙醇浓度为3M时,最高的乙醇交叉为12.4 mol m-3。结果表明,乙醇浓度越高,乙醇交叉越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling and Simulation of A Direct Ethanol Fuel Cell: Electrochemical Reactions and Mass Transport Consideration
Mathematical modelling was developed for direct ethanol fuel cell (DEFC) by considering electrochemical reactions and mass transport. The model was validated against experimental data from previous research and showed good agreement with the data. The developed mathematical modelling for this research was based on the Butler-Volmer equation, Tafel equation and Fick’s law. The model was used to investigate parameters such as ethanol concentration and cell operating temperature. The developed mathematical model simulated the data from previous research. Ethanol concentration played a vital role to achieve high-performance DEFC. The higher the ethanol concentration, the higher current could be generated in DEFC. Nonetheless, the higher the usage of the ethanol concentration, the higher the ethanol crossover might occur. The highest current density produced from the fuel cell was at 21.48 mA cm-2, for 2M of ethanol concentration. Operating temperature also affected cell performance. The higher the operating temperature, the higher power density could be generated—the peak power density of 5.7 mWcm-2 at 75 oC with 2M of ethanol. As for ethanol crossover, the highest ethanol crossover was at 12.4 mol m-3 for 3M concentration of ethanol. It proved that higher ethanol concentration led to higher ethanol crossover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信