QBF求解有什么新进展?:(特邀演讲)

M. Seidl
{"title":"QBF求解有什么新进展?:(特邀演讲)","authors":"M. Seidl","doi":"10.1109/SYNASC57785.2022.00012","DOIUrl":null,"url":null,"abstract":"Quantified Boolean Formulas (QBFs) extend propositional formulas by quantifiers over the Boolean variables. This extension makes the QBF decision problem PSPACE-hard. Therefore, QBFs provide an attractive reasoning framework for many reasoning problems from artificial intelligence, formal verification, and other fields. In this work, we review current advancements in the theory and practice of QBF solving.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What’s New In QBF Solving? : (Invited Talk)\",\"authors\":\"M. Seidl\",\"doi\":\"10.1109/SYNASC57785.2022.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantified Boolean Formulas (QBFs) extend propositional formulas by quantifiers over the Boolean variables. This extension makes the QBF decision problem PSPACE-hard. Therefore, QBFs provide an attractive reasoning framework for many reasoning problems from artificial intelligence, formal verification, and other fields. In this work, we review current advancements in the theory and practice of QBF solving.\",\"PeriodicalId\":446065,\"journal\":{\"name\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC57785.2022.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量化布尔公式通过量词在布尔变量上扩展命题公式。这个扩展使得QBF决策问题PSPACE-hard。因此,qbf为人工智能、形式验证和其他领域的许多推理问题提供了一个有吸引力的推理框架。在这项工作中,我们回顾了QBF求解的理论和实践的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What’s New In QBF Solving? : (Invited Talk)
Quantified Boolean Formulas (QBFs) extend propositional formulas by quantifiers over the Boolean variables. This extension makes the QBF decision problem PSPACE-hard. Therefore, QBFs provide an attractive reasoning framework for many reasoning problems from artificial intelligence, formal verification, and other fields. In this work, we review current advancements in the theory and practice of QBF solving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信