{"title":"重述医学图像对齐中的重叠不变性","authors":"N. Cahill, J. Schnabel, J. Noble, D. Hawkes","doi":"10.1109/CVPRW.2008.4562989","DOIUrl":null,"url":null,"abstract":"In Studholme et al. introduced normalized mutual information (NMI) as an overlap invariant generalization of mutual information (MI). Even though Studholme showed how NMI could be used effectively in multimodal medical image alignment, the overlap invariance was only established empirically on a few simple examples. In this paper, we illustrate a simple example in which NMI fails to be invariant to changes in overlap size, as do other standard similarity measures including MI, cross correlation (CCorr), correlation coefficient (CCoeff), correlation ratio (CR), and entropy correlation coefficient (ECC). We then derive modified forms of all of these similarity measures that are proven to be invariant to changes in overlap size. This is done by making certain assumptions about background statistics. Experiments on multimodal rigid registration of brain images show that 1) most of the modified similarity measures outperform their standard forms, and 2) the modified version of MI exhibits superior performance over any of the other similarity measures for both CT/MR and PET/MR registration.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"119 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Revisiting overlap invariance in medical image alignment\",\"authors\":\"N. Cahill, J. Schnabel, J. Noble, D. Hawkes\",\"doi\":\"10.1109/CVPRW.2008.4562989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Studholme et al. introduced normalized mutual information (NMI) as an overlap invariant generalization of mutual information (MI). Even though Studholme showed how NMI could be used effectively in multimodal medical image alignment, the overlap invariance was only established empirically on a few simple examples. In this paper, we illustrate a simple example in which NMI fails to be invariant to changes in overlap size, as do other standard similarity measures including MI, cross correlation (CCorr), correlation coefficient (CCoeff), correlation ratio (CR), and entropy correlation coefficient (ECC). We then derive modified forms of all of these similarity measures that are proven to be invariant to changes in overlap size. This is done by making certain assumptions about background statistics. Experiments on multimodal rigid registration of brain images show that 1) most of the modified similarity measures outperform their standard forms, and 2) the modified version of MI exhibits superior performance over any of the other similarity measures for both CT/MR and PET/MR registration.\",\"PeriodicalId\":102206,\"journal\":{\"name\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"119 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2008.4562989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4562989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisiting overlap invariance in medical image alignment
In Studholme et al. introduced normalized mutual information (NMI) as an overlap invariant generalization of mutual information (MI). Even though Studholme showed how NMI could be used effectively in multimodal medical image alignment, the overlap invariance was only established empirically on a few simple examples. In this paper, we illustrate a simple example in which NMI fails to be invariant to changes in overlap size, as do other standard similarity measures including MI, cross correlation (CCorr), correlation coefficient (CCoeff), correlation ratio (CR), and entropy correlation coefficient (ECC). We then derive modified forms of all of these similarity measures that are proven to be invariant to changes in overlap size. This is done by making certain assumptions about background statistics. Experiments on multimodal rigid registration of brain images show that 1) most of the modified similarity measures outperform their standard forms, and 2) the modified version of MI exhibits superior performance over any of the other similarity measures for both CT/MR and PET/MR registration.