机器学习聚类与潜在类分析对癌症症状数据的比较

Nikolaos Papachristou, C. Miaskowski, P. Barnaghi, R. Maguire, Nazli Farajidavar, B. Cooper, Xiao Hu
{"title":"机器学习聚类与潜在类分析对癌症症状数据的比较","authors":"Nikolaos Papachristou, C. Miaskowski, P. Barnaghi, R. Maguire, Nazli Farajidavar, B. Cooper, Xiao Hu","doi":"10.1109/HIC.2016.7797722","DOIUrl":null,"url":null,"abstract":"Symptom Cluster Research is a major topic in Cancer Symptom Science. In spite of the several statistical and clinical approaches in this domain, there is not a consensus on which method performs better. Identifying a generally accepted analytical method is important in order to be able to utilize and process all the available data. In this paper we report a secondary analysis on cancer symptom data, comparing the performance of five Machine Learning (ML) clustering algorithms in doing so. Based on how well they separate specific subsets of symptom measurements we select the best of them and proceed to compare its performance with the Latent Class Analysis (LCA) method. This analysis is a part of an ongoing study for identifying suitable Machine Learning algorithms to analyse and predict cancer symptoms in cancer treatment.","PeriodicalId":333642,"journal":{"name":"2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Comparing machine learning clustering with latent class analysis on cancer symptoms' data\",\"authors\":\"Nikolaos Papachristou, C. Miaskowski, P. Barnaghi, R. Maguire, Nazli Farajidavar, B. Cooper, Xiao Hu\",\"doi\":\"10.1109/HIC.2016.7797722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symptom Cluster Research is a major topic in Cancer Symptom Science. In spite of the several statistical and clinical approaches in this domain, there is not a consensus on which method performs better. Identifying a generally accepted analytical method is important in order to be able to utilize and process all the available data. In this paper we report a secondary analysis on cancer symptom data, comparing the performance of five Machine Learning (ML) clustering algorithms in doing so. Based on how well they separate specific subsets of symptom measurements we select the best of them and proceed to compare its performance with the Latent Class Analysis (LCA) method. This analysis is a part of an ongoing study for identifying suitable Machine Learning algorithms to analyse and predict cancer symptoms in cancer treatment.\",\"PeriodicalId\":333642,\"journal\":{\"name\":\"2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIC.2016.7797722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIC.2016.7797722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

症状聚类研究是癌症症状科学的一个重要课题。尽管在这一领域有几种统计和临床方法,但对于哪种方法表现更好还没有达成共识。为了能够利用和处理所有可用的数据,确定一种普遍接受的分析方法是很重要的。在本文中,我们报告了对癌症症状数据的二次分析,比较了五种机器学习(ML)聚类算法在此过程中的性能。基于它们如何很好地分离症状测量的特定子集,我们选择其中最好的,并继续将其性能与潜在类分析(LCA)方法进行比较。这项分析是一项正在进行的研究的一部分,该研究旨在确定合适的机器学习算法,以分析和预测癌症治疗中的癌症症状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing machine learning clustering with latent class analysis on cancer symptoms' data
Symptom Cluster Research is a major topic in Cancer Symptom Science. In spite of the several statistical and clinical approaches in this domain, there is not a consensus on which method performs better. Identifying a generally accepted analytical method is important in order to be able to utilize and process all the available data. In this paper we report a secondary analysis on cancer symptom data, comparing the performance of five Machine Learning (ML) clustering algorithms in doing so. Based on how well they separate specific subsets of symptom measurements we select the best of them and proceed to compare its performance with the Latent Class Analysis (LCA) method. This analysis is a part of an ongoing study for identifying suitable Machine Learning algorithms to analyse and predict cancer symptoms in cancer treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信