一种估计隐马尔可夫模型参数的新方法

Y. Gao, Y. Chen, Taiyi Huang
{"title":"一种估计隐马尔可夫模型参数的新方法","authors":"Y. Gao, Y. Chen, Taiyi Huang","doi":"10.1109/ICPR.1990.119323","DOIUrl":null,"url":null,"abstract":"An algorithm for estimating the parameters of a hidden Markov model (HMM) is presented. In this algorithm, the rule of parameter estimation is used to maximize the recognition accuracy or to minimize the probability of error of the recognizer which is based on hidden Markov models instead of maximizing the likelihood function in maximum likelihood estimates (MLEs). The performance of minimum probability error (MPE) estimates is better than that of MLEs. Since MPE is much more complex in computation than an MLE, a simplified implementation of MPE which is much more moderate in computation is given. Experiments on speech recognition based on HMMs show that the accuracy of the recognizer trained by the estimation method has about a 5% improvement over the MLE.<<ETX>>","PeriodicalId":135937,"journal":{"name":"[1990] Proceedings. 10th International Conference on Pattern Recognition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new method for estimation of hidden Markov model parameters\",\"authors\":\"Y. Gao, Y. Chen, Taiyi Huang\",\"doi\":\"10.1109/ICPR.1990.119323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for estimating the parameters of a hidden Markov model (HMM) is presented. In this algorithm, the rule of parameter estimation is used to maximize the recognition accuracy or to minimize the probability of error of the recognizer which is based on hidden Markov models instead of maximizing the likelihood function in maximum likelihood estimates (MLEs). The performance of minimum probability error (MPE) estimates is better than that of MLEs. Since MPE is much more complex in computation than an MLE, a simplified implementation of MPE which is much more moderate in computation is given. Experiments on speech recognition based on HMMs show that the accuracy of the recognizer trained by the estimation method has about a 5% improvement over the MLE.<<ETX>>\",\"PeriodicalId\":135937,\"journal\":{\"name\":\"[1990] Proceedings. 10th International Conference on Pattern Recognition\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. 10th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1990.119323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. 10th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1990.119323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种隐马尔可夫模型参数估计算法。该算法采用参数估计规则来实现基于隐马尔可夫模型的识别器的识别精度最大化或误差概率最小化,而不是最大似然估计中的似然函数最大化。最小概率误差(MPE)估计的性能优于最大概率误差估计。由于MPE的计算比MLE复杂得多,因此给出了一种简化的MPE实现,其计算量要小得多。基于hmm的语音识别实验表明,该估计方法训练的识别器准确率比MLE提高了约5%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for estimation of hidden Markov model parameters
An algorithm for estimating the parameters of a hidden Markov model (HMM) is presented. In this algorithm, the rule of parameter estimation is used to maximize the recognition accuracy or to minimize the probability of error of the recognizer which is based on hidden Markov models instead of maximizing the likelihood function in maximum likelihood estimates (MLEs). The performance of minimum probability error (MPE) estimates is better than that of MLEs. Since MPE is much more complex in computation than an MLE, a simplified implementation of MPE which is much more moderate in computation is given. Experiments on speech recognition based on HMMs show that the accuracy of the recognizer trained by the estimation method has about a 5% improvement over the MLE.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信