基于GMM和SVM的软件故障自动定位方法

Xiaoxue Wu, Wei Zheng, Junzheng Chen, Han Bai, Desheng Hu, Dejun Mu
{"title":"基于GMM和SVM的软件故障自动定位方法","authors":"Xiaoxue Wu, Wei Zheng, Junzheng Chen, Han Bai, Desheng Hu, Dejun Mu","doi":"10.1109/PIC.2018.8706285","DOIUrl":null,"url":null,"abstract":"To improve the efficiency and accuracy of automatic fault localization. We propose an approach to direct fault localization by applying Gaussian Mixture Model (GMM) and Support Vector Machine (SVM), which are two mathematical models with excellent classification and prediction abilities. We first preprocess the training data using GMM-based clustering algorithm. Then the constant penalty factor of SVM is replaced with two adjustable ones. After that, we find out the mapping relationships between the coverage information and the execution result of each test case by virtue of the robust learning ability of modified SVM. An efficiency comparison between our technique and others on Siemens Suite is carried out afterwards. The experiment result indicates that our localization approach achieves a better accuracy in single and multiple faults localization without increasing testing cost.","PeriodicalId":236106,"journal":{"name":"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A GMM and SVM Combined Approach for Automatically Software Fault Localization\",\"authors\":\"Xiaoxue Wu, Wei Zheng, Junzheng Chen, Han Bai, Desheng Hu, Dejun Mu\",\"doi\":\"10.1109/PIC.2018.8706285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the efficiency and accuracy of automatic fault localization. We propose an approach to direct fault localization by applying Gaussian Mixture Model (GMM) and Support Vector Machine (SVM), which are two mathematical models with excellent classification and prediction abilities. We first preprocess the training data using GMM-based clustering algorithm. Then the constant penalty factor of SVM is replaced with two adjustable ones. After that, we find out the mapping relationships between the coverage information and the execution result of each test case by virtue of the robust learning ability of modified SVM. An efficiency comparison between our technique and others on Siemens Suite is carried out afterwards. The experiment result indicates that our localization approach achieves a better accuracy in single and multiple faults localization without increasing testing cost.\",\"PeriodicalId\":236106,\"journal\":{\"name\":\"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2018.8706285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2018.8706285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提高故障自动定位的效率和准确性。本文提出了一种基于高斯混合模型(GMM)和支持向量机(SVM)的直接故障定位方法,这两种数学模型具有良好的分类和预测能力。我们首先使用基于gmm的聚类算法对训练数据进行预处理。然后用两个可调的惩罚因子替换支持向量机的常数惩罚因子。然后,利用改进支持向量机的鲁棒学习能力,找出各测试用例的覆盖信息与执行结果之间的映射关系。然后将我们的技术与Siemens Suite上的其他技术进行了效率比较。实验结果表明,该方法在不增加测试成本的情况下,在单故障和多故障定位中都取得了较好的定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GMM and SVM Combined Approach for Automatically Software Fault Localization
To improve the efficiency and accuracy of automatic fault localization. We propose an approach to direct fault localization by applying Gaussian Mixture Model (GMM) and Support Vector Machine (SVM), which are two mathematical models with excellent classification and prediction abilities. We first preprocess the training data using GMM-based clustering algorithm. Then the constant penalty factor of SVM is replaced with two adjustable ones. After that, we find out the mapping relationships between the coverage information and the execution result of each test case by virtue of the robust learning ability of modified SVM. An efficiency comparison between our technique and others on Siemens Suite is carried out afterwards. The experiment result indicates that our localization approach achieves a better accuracy in single and multiple faults localization without increasing testing cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信