电力变压器顶油温度建模的软计算技术

Huy Huynh Nguyen, G. Baxter, L. Reznik
{"title":"电力变压器顶油温度建模的软计算技术","authors":"Huy Huynh Nguyen, G. Baxter, L. Reznik","doi":"10.1109/ISAP.2007.4441618","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation and a comparative study of four different approaches namely ANSI/IEEE standard methods, Adaptive Neuro-Fuzzy Inference System (ANFIS), Multilayer Feedforward Neural Network (MFNN) and Elman Recurrent Neural Network (ERNN) to modeling and prediction of the top-oil temperature for the 8 MVA Oil Air (OA)-cooled and 27 MVA Forced Air (FA)-cooled class of power transformers. A comparison of the proposed techniques is presented for predicting top-oil temperature based on the historical data measured over a 35 day period for the first transformer and 4.5 days for the second transformer with either a half or a quarter hour sampling time. Comparison results indicate that hybrid neuro-fuzzy network is the best candidate for the analysis and predicting of power transformer top-oil temperature. The ANFIS demonstrated the paramount performance in temperature prediction in terms of Root Mean Square Error (RMSE) and peaks of error.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Soft Computing Techniques to Model the Top-oil Temperature of Power Transformers\",\"authors\":\"Huy Huynh Nguyen, G. Baxter, L. Reznik\",\"doi\":\"10.1109/ISAP.2007.4441618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an investigation and a comparative study of four different approaches namely ANSI/IEEE standard methods, Adaptive Neuro-Fuzzy Inference System (ANFIS), Multilayer Feedforward Neural Network (MFNN) and Elman Recurrent Neural Network (ERNN) to modeling and prediction of the top-oil temperature for the 8 MVA Oil Air (OA)-cooled and 27 MVA Forced Air (FA)-cooled class of power transformers. A comparison of the proposed techniques is presented for predicting top-oil temperature based on the historical data measured over a 35 day period for the first transformer and 4.5 days for the second transformer with either a half or a quarter hour sampling time. Comparison results indicate that hybrid neuro-fuzzy network is the best candidate for the analysis and predicting of power transformer top-oil temperature. The ANFIS demonstrated the paramount performance in temperature prediction in terms of Root Mean Square Error (RMSE) and peaks of error.\",\"PeriodicalId\":320068,\"journal\":{\"name\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2007.4441618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文对ANSI/IEEE标准方法、自适应神经模糊推理系统(ANFIS)、多层前馈神经网络(MFNN)和Elman递归神经网络(ERNN)四种不同的方法进行了调查和比较研究,用于8 MVA油冷(OA)和27 MVA强制空气(FA)冷却类电力变压器的顶油温度建模和预测。本文介绍了基于历史数据预测顶油温度的几种方法的比较,这些数据是基于第一个变压器35天的历史数据和第二个变压器4.5天的历史数据,采样时间为半小时或四分之一小时。对比结果表明,混合神经模糊网络是电力变压器顶油温度分析与预测的最佳选择。在均方根误差(RMSE)和误差峰方面,ANFIS在温度预测方面表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft Computing Techniques to Model the Top-oil Temperature of Power Transformers
This paper presents an investigation and a comparative study of four different approaches namely ANSI/IEEE standard methods, Adaptive Neuro-Fuzzy Inference System (ANFIS), Multilayer Feedforward Neural Network (MFNN) and Elman Recurrent Neural Network (ERNN) to modeling and prediction of the top-oil temperature for the 8 MVA Oil Air (OA)-cooled and 27 MVA Forced Air (FA)-cooled class of power transformers. A comparison of the proposed techniques is presented for predicting top-oil temperature based on the historical data measured over a 35 day period for the first transformer and 4.5 days for the second transformer with either a half or a quarter hour sampling time. Comparison results indicate that hybrid neuro-fuzzy network is the best candidate for the analysis and predicting of power transformer top-oil temperature. The ANFIS demonstrated the paramount performance in temperature prediction in terms of Root Mean Square Error (RMSE) and peaks of error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信