托管打印服务的极限体积检测

J. Handley, Marie-Luise Schneider, Victor Ciriza, J. Earl
{"title":"托管打印服务的极限体积检测","authors":"J. Handley, Marie-Luise Schneider, Victor Ciriza, J. Earl","doi":"10.1109/ICMLA.2010.95","DOIUrl":null,"url":null,"abstract":"A managed print service (MPS) manages the printing, scanning and facsimile devices in an enterprise to control cost and improve availability. Services include supplies replenishment, maintenance, repair, and use reporting. Customers are billed per page printed. Data are collected from a network of devices to facilitate management. The number of pages printed per device must be accurately counted to fairly bill the customer. Software errors, hardware changes, repairs, and human error all contribute to “meter reads” that are exceptionally high and are apt to be challenged by the customer were they to be billed. Account managers periodically review data for each device in an account. This process is tedious and time consuming and an automated solution is desired. Exceptional print volumes are not always salient and detecting them statistically is prone to errors owing to nonstationarity of the data. Mean levels and variances change over time and usage is highly auto correlated which precludes simple detection methods based on deviations from an average background. A solution must also be computationally inexpensive and require little auxiliary storage because hundreds of thousands of streams of device data must be processed. We present an algorithm and system for online detection of extreme print volumes that uses dynamic linear models (DLM) with variance learning. A DLM is a state space time series model comprising a random mean level system process and a random observation process. Both components are updated using Bayesian statistics. After each update, a forecasted value and its estimated variance are calculated. A read is flagged as exceptionally high if its value is highly unlikely with respect to a forecasted value and its standard deviation. We provide implementation details and results of a field test in which error rate was decreased from 26.4% to 0.5% on 728 observed meter reads.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extreme Volume Detection for Managed Print Services\",\"authors\":\"J. Handley, Marie-Luise Schneider, Victor Ciriza, J. Earl\",\"doi\":\"10.1109/ICMLA.2010.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A managed print service (MPS) manages the printing, scanning and facsimile devices in an enterprise to control cost and improve availability. Services include supplies replenishment, maintenance, repair, and use reporting. Customers are billed per page printed. Data are collected from a network of devices to facilitate management. The number of pages printed per device must be accurately counted to fairly bill the customer. Software errors, hardware changes, repairs, and human error all contribute to “meter reads” that are exceptionally high and are apt to be challenged by the customer were they to be billed. Account managers periodically review data for each device in an account. This process is tedious and time consuming and an automated solution is desired. Exceptional print volumes are not always salient and detecting them statistically is prone to errors owing to nonstationarity of the data. Mean levels and variances change over time and usage is highly auto correlated which precludes simple detection methods based on deviations from an average background. A solution must also be computationally inexpensive and require little auxiliary storage because hundreds of thousands of streams of device data must be processed. We present an algorithm and system for online detection of extreme print volumes that uses dynamic linear models (DLM) with variance learning. A DLM is a state space time series model comprising a random mean level system process and a random observation process. Both components are updated using Bayesian statistics. After each update, a forecasted value and its estimated variance are calculated. A read is flagged as exceptionally high if its value is highly unlikely with respect to a forecasted value and its standard deviation. We provide implementation details and results of a field test in which error rate was decreased from 26.4% to 0.5% on 728 observed meter reads.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

管理打印服务(MPS)管理企业中的打印、扫描和传真设备,以控制成本并提高可用性。服务包括补给品、维护、修理和使用报告。客户按打印页数收费。从设备网络中收集数据,方便管理。必须准确计算每台设备打印的页数,以便公平地向客户收费。软件错误、硬件更改、维修和人为错误都会导致“仪表读数”异常高,并且很容易受到客户的质疑。客户经理定期审查客户中每个设备的数据。这个过程冗长且耗时,需要一个自动化的解决方案。由于数据的非平稳性,异常的印刷量并不总是显著的,并且在统计上检测它们容易出错。平均水平和方差随时间变化,使用情况高度自相关,这使得基于平均背景偏差的简单检测方法无法实现。解决方案还必须在计算上便宜,并且需要很少的辅助存储,因为必须处理数十万个设备数据流。我们提出了一种使用动态线性模型(DLM)和方差学习的在线检测极端打印量的算法和系统。DLM是一个由随机平均水平系统过程和随机观测过程组成的状态空间时间序列模型。这两个组件都使用贝叶斯统计更新。每次更新后,计算预测值及其估计方差。如果读数的值相对于预测值及其标准偏差极不可能,则将其标记为异常高。我们提供了现场测试的实施细节和结果,在728个观察到的仪表读数中,错误率从26.4%下降到0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme Volume Detection for Managed Print Services
A managed print service (MPS) manages the printing, scanning and facsimile devices in an enterprise to control cost and improve availability. Services include supplies replenishment, maintenance, repair, and use reporting. Customers are billed per page printed. Data are collected from a network of devices to facilitate management. The number of pages printed per device must be accurately counted to fairly bill the customer. Software errors, hardware changes, repairs, and human error all contribute to “meter reads” that are exceptionally high and are apt to be challenged by the customer were they to be billed. Account managers periodically review data for each device in an account. This process is tedious and time consuming and an automated solution is desired. Exceptional print volumes are not always salient and detecting them statistically is prone to errors owing to nonstationarity of the data. Mean levels and variances change over time and usage is highly auto correlated which precludes simple detection methods based on deviations from an average background. A solution must also be computationally inexpensive and require little auxiliary storage because hundreds of thousands of streams of device data must be processed. We present an algorithm and system for online detection of extreme print volumes that uses dynamic linear models (DLM) with variance learning. A DLM is a state space time series model comprising a random mean level system process and a random observation process. Both components are updated using Bayesian statistics. After each update, a forecasted value and its estimated variance are calculated. A read is flagged as exceptionally high if its value is highly unlikely with respect to a forecasted value and its standard deviation. We provide implementation details and results of a field test in which error rate was decreased from 26.4% to 0.5% on 728 observed meter reads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信