操作系统指纹通过自动网络流量分析

A. Aksoy, S. Louis, M. H. Gunes
{"title":"操作系统指纹通过自动网络流量分析","authors":"A. Aksoy, S. Louis, M. H. Gunes","doi":"10.1109/CEC.2017.7969609","DOIUrl":null,"url":null,"abstract":"Operating System (OS) detection significantly impacts network management and security. Current OS classification systems used by administrators use human-expert generated network signatures for classification. In this study, we investigate an automated approach for classifying host OS by analyzing the network packets generated by them without relying on human experts. While earlier approaches look for certain packets such as SYN packets, our approach is able to use any TCP/IP packet to determine the host systems' OS. We use genetic algorithms for feature subset selection in three machine learning algorithms (i.e., OneR, Random Forest and Decision Trees) to classify host OS by analyzing network packets. With the help of feature subset selection and machine learning, we can automatically detect the difference in network behaviors of OSs and also adapt to new OSs. Results show that the genetic algorithm significantly reduces the number of packet features to be analyzed while increasing the classification performance.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Operating system fingerprinting via automated network traffic analysis\",\"authors\":\"A. Aksoy, S. Louis, M. H. Gunes\",\"doi\":\"10.1109/CEC.2017.7969609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operating System (OS) detection significantly impacts network management and security. Current OS classification systems used by administrators use human-expert generated network signatures for classification. In this study, we investigate an automated approach for classifying host OS by analyzing the network packets generated by them without relying on human experts. While earlier approaches look for certain packets such as SYN packets, our approach is able to use any TCP/IP packet to determine the host systems' OS. We use genetic algorithms for feature subset selection in three machine learning algorithms (i.e., OneR, Random Forest and Decision Trees) to classify host OS by analyzing network packets. With the help of feature subset selection and machine learning, we can automatically detect the difference in network behaviors of OSs and also adapt to new OSs. Results show that the genetic algorithm significantly reduces the number of packet features to be analyzed while increasing the classification performance.\",\"PeriodicalId\":335123,\"journal\":{\"name\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2017.7969609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

操作系统检测对网络管理和网络安全有着重要的影响。当前管理员使用的操作系统分类系统使用人类专家生成的网络签名进行分类。在这项研究中,我们研究了一种自动化的方法,通过分析主机操作系统生成的网络数据包来对主机操作系统进行分类,而不依赖于人类专家。虽然以前的方法查找某些数据包,如SYN数据包,但我们的方法能够使用任何TCP/IP数据包来确定主机系统的操作系统。我们在三种机器学习算法(即OneR、Random Forest和Decision Trees)中使用遗传算法进行特征子集选择,通过分析网络数据包对主机操作系统进行分类。通过特征子集选择和机器学习,我们可以自动检测操作系统网络行为的差异,并适应新的操作系统。结果表明,遗传算法在提高分类性能的同时,显著减少了需要分析的包特征数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operating system fingerprinting via automated network traffic analysis
Operating System (OS) detection significantly impacts network management and security. Current OS classification systems used by administrators use human-expert generated network signatures for classification. In this study, we investigate an automated approach for classifying host OS by analyzing the network packets generated by them without relying on human experts. While earlier approaches look for certain packets such as SYN packets, our approach is able to use any TCP/IP packet to determine the host systems' OS. We use genetic algorithms for feature subset selection in three machine learning algorithms (i.e., OneR, Random Forest and Decision Trees) to classify host OS by analyzing network packets. With the help of feature subset selection and machine learning, we can automatically detect the difference in network behaviors of OSs and also adapt to new OSs. Results show that the genetic algorithm significantly reduces the number of packet features to be analyzed while increasing the classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信