增强微调提高文档图像理解能力

Bao-Sinh Nguyen, Dung Tien Le, Hieu M. Vu, Tuan-Anh Dang Nguyen, Minh Le Nguyen, Hung Le
{"title":"增强微调提高文档图像理解能力","authors":"Bao-Sinh Nguyen, Dung Tien Le, Hieu M. Vu, Tuan-Anh Dang Nguyen, Minh Le Nguyen, Hung Le","doi":"10.48550/arXiv.2209.12561","DOIUrl":null,"url":null,"abstract":"Successful Artificial Intelligence systems often require numerous labeled data to extract information from document images. In this paper, we investigate the problem of improving the performance of Artificial Intelligence systems in understanding document images, especially in cases where training data is limited. We address the problem by proposing a novel finetuning method using reinforcement learning. Our approach treats the Information Extraction model as a policy network and uses policy gradient training to update the model to maximize combined reward functions that complement the traditional cross-entropy losses. Our experiments on four datasets using labels and expert feedback demonstrate that our finetuning mechanism consistently improves the performance of a state-of-the-art information extractor, especially in the small training data regime.","PeriodicalId":281152,"journal":{"name":"International Conference on Neural Information Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Document Image Understanding with Reinforcement Finetuning\",\"authors\":\"Bao-Sinh Nguyen, Dung Tien Le, Hieu M. Vu, Tuan-Anh Dang Nguyen, Minh Le Nguyen, Hung Le\",\"doi\":\"10.48550/arXiv.2209.12561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Successful Artificial Intelligence systems often require numerous labeled data to extract information from document images. In this paper, we investigate the problem of improving the performance of Artificial Intelligence systems in understanding document images, especially in cases where training data is limited. We address the problem by proposing a novel finetuning method using reinforcement learning. Our approach treats the Information Extraction model as a policy network and uses policy gradient training to update the model to maximize combined reward functions that complement the traditional cross-entropy losses. Our experiments on four datasets using labels and expert feedback demonstrate that our finetuning mechanism consistently improves the performance of a state-of-the-art information extractor, especially in the small training data regime.\",\"PeriodicalId\":281152,\"journal\":{\"name\":\"International Conference on Neural Information Processing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Neural Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.12561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.12561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

成功的人工智能系统通常需要大量标记数据来从文档图像中提取信息。在本文中,我们研究了提高人工智能系统在理解文档图像方面的性能的问题,特别是在训练数据有限的情况下。我们通过提出一种新的使用强化学习的微调方法来解决这个问题。我们的方法将信息提取模型视为一个策略网络,并使用策略梯度训练来更新模型,以最大化组合奖励函数,以补充传统的交叉熵损失。我们在使用标签和专家反馈的四个数据集上的实验表明,我们的微调机制始终如一地提高了最先进的信息提取器的性能,特别是在小型训练数据体系中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Document Image Understanding with Reinforcement Finetuning
Successful Artificial Intelligence systems often require numerous labeled data to extract information from document images. In this paper, we investigate the problem of improving the performance of Artificial Intelligence systems in understanding document images, especially in cases where training data is limited. We address the problem by proposing a novel finetuning method using reinforcement learning. Our approach treats the Information Extraction model as a policy network and uses policy gradient training to update the model to maximize combined reward functions that complement the traditional cross-entropy losses. Our experiments on four datasets using labels and expert feedback demonstrate that our finetuning mechanism consistently improves the performance of a state-of-the-art information extractor, especially in the small training data regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信