紧系和对偶广义平移不变系的刻画

Mads S. Jakobsen, J. Lemvig
{"title":"紧系和对偶广义平移不变系的刻画","authors":"Mads S. Jakobsen, J. Lemvig","doi":"10.1109/SAMPTA.2015.7148858","DOIUrl":null,"url":null,"abstract":"We present results concerning generalized translation invariant (GTI) systems on a second countable locally compact abelian group G. These are systems with a family of generators {g<sub>j, P</sub>}<sub>jεJ, pεPJ</sub> ⊂ L<sup>2</sup>(G), where J is a countable index set, and P<sub>j</sub>, j ε J are certain measure spaces. Furthermore, for each j we let Γ<sub>j</sub>, be a closed subgroup of G such that G/Γ<sub>j</sub> is compact. A GTI system is then the collection of functions U<sub>jεJ</sub>{g<sub>j, p</sub>(· - γ}<sub>γεΓj, pεPj</sub>. Many well known systems, such as wavelet, shearlet and Gabor systems, both the discrete and continuous types, are GTI systems. We characterize when such systems form tight frames, and when two GTI Bessel systems form dual frames for L<sup>2</sup>(G). In particular, this offers a unified approach to the theory of discrete and continuous frames and, e.g., yields well known results for discrete and continuous Gabor and wavelet systems.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A characterization of tight and dual generalized translation invariant frames\",\"authors\":\"Mads S. Jakobsen, J. Lemvig\",\"doi\":\"10.1109/SAMPTA.2015.7148858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present results concerning generalized translation invariant (GTI) systems on a second countable locally compact abelian group G. These are systems with a family of generators {g<sub>j, P</sub>}<sub>jεJ, pεPJ</sub> ⊂ L<sup>2</sup>(G), where J is a countable index set, and P<sub>j</sub>, j ε J are certain measure spaces. Furthermore, for each j we let Γ<sub>j</sub>, be a closed subgroup of G such that G/Γ<sub>j</sub> is compact. A GTI system is then the collection of functions U<sub>jεJ</sub>{g<sub>j, p</sub>(· - γ}<sub>γεΓj, pεPj</sub>. Many well known systems, such as wavelet, shearlet and Gabor systems, both the discrete and continuous types, are GTI systems. We characterize when such systems form tight frames, and when two GTI Bessel systems form dual frames for L<sup>2</sup>(G). In particular, this offers a unified approach to the theory of discrete and continuous frames and, e.g., yields well known results for discrete and continuous Gabor and wavelet systems.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了关于第二可数局部紧阿贝尔群G上的广义平移不变量(GTI)系统的结果。这些系统具有一系列发生器{gj, P}jεJ, pεPJ∧L2(G),其中J是可数指标集,Pj, J εJ是一定的测度空间。更进一步,对于每一个j,我们令Γj为G的闭子群,使得G/Γj是紧的。一个GTI系统是函数UjεJ{gj, p(·- γ}γεΓj, pεPj的集合。许多众所周知的系统,如小波、shearlet和Gabor系统,无论是离散型还是连续型,都是GTI系统。我们描述了当这样的系统形成紧框架,当两个GTI贝塞尔系统形成L2(G)的双框架。特别是,这为离散和连续框架的理论提供了一个统一的方法,例如,对离散和连续的Gabor和小波系统产生了众所周知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of tight and dual generalized translation invariant frames
We present results concerning generalized translation invariant (GTI) systems on a second countable locally compact abelian group G. These are systems with a family of generators {gj, P}jεJ, pεPJ ⊂ L2(G), where J is a countable index set, and Pj, j ε J are certain measure spaces. Furthermore, for each j we let Γj, be a closed subgroup of G such that G/Γj is compact. A GTI system is then the collection of functions UjεJ{gj, p(· - γ}γεΓj, pεPj. Many well known systems, such as wavelet, shearlet and Gabor systems, both the discrete and continuous types, are GTI systems. We characterize when such systems form tight frames, and when two GTI Bessel systems form dual frames for L2(G). In particular, this offers a unified approach to the theory of discrete and continuous frames and, e.g., yields well known results for discrete and continuous Gabor and wavelet systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信