{"title":"中子扩散方程的数值解","authors":"H. Kaper, G. Leaf, A. Lindeman","doi":"10.1002/9781119582342.ch6","DOIUrl":null,"url":null,"abstract":"7 I. DESCRIPTION OF THE PROBLEM 9 A. Introduction 9 B. Statement of Objectives 11 C. The Multigroup Formalism and the Power Iteration Method . . . 11 II. FORMULATION OF A GALERKIN-TYPE APPROXIMATION PROCEDURE 16 A. Introduction 16 B. Statement of the Problem and Properties of the Solution . . . 18 C. The Galerkin Approximation Procedure 25 III. SOLUTION OF THE APPROXIMATE PROBLEM 32 A. Choice of a Finite-dimensional Subspace 32 B. Construction of a Basis 33 C. Solution of the Approximate Problem 38 D. Generation of the Coefficients 39 IV. DESCRIPTION OF THE RESEARCH COMPUTER PROGRAM HOD 46 V. A TIMING COMPARISON STUDY 48 A. Introduction 48 B. Description of the Computer Program DARC2D 48 C. Scope and Limitations of the Studies 50 D. A Homogeneous Reactor Configuration 54 E. A Simple Two-zone Reactor Configuration 62 F. A 1,000 MWe Liquid Metal Fast Breeder Reactor Configuration . 72 G. A Loosely Coupled Reactor Configuration 78 H. Conclusions 92 VI. SUMMARY AND CONCLUSIONS 95 APPENDIX 96 ACKNOWLEDGEMENT 97 REFERENCES 98","PeriodicalId":153796,"journal":{"name":"Nuclear Reactor Physics and Engineering","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NUMERICAL SOLUTION OF THE NEUTRON DIFFUSION EQUATION\",\"authors\":\"H. Kaper, G. Leaf, A. Lindeman\",\"doi\":\"10.1002/9781119582342.ch6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"7 I. DESCRIPTION OF THE PROBLEM 9 A. Introduction 9 B. Statement of Objectives 11 C. The Multigroup Formalism and the Power Iteration Method . . . 11 II. FORMULATION OF A GALERKIN-TYPE APPROXIMATION PROCEDURE 16 A. Introduction 16 B. Statement of the Problem and Properties of the Solution . . . 18 C. The Galerkin Approximation Procedure 25 III. SOLUTION OF THE APPROXIMATE PROBLEM 32 A. Choice of a Finite-dimensional Subspace 32 B. Construction of a Basis 33 C. Solution of the Approximate Problem 38 D. Generation of the Coefficients 39 IV. DESCRIPTION OF THE RESEARCH COMPUTER PROGRAM HOD 46 V. A TIMING COMPARISON STUDY 48 A. Introduction 48 B. Description of the Computer Program DARC2D 48 C. Scope and Limitations of the Studies 50 D. A Homogeneous Reactor Configuration 54 E. A Simple Two-zone Reactor Configuration 62 F. A 1,000 MWe Liquid Metal Fast Breeder Reactor Configuration . 72 G. A Loosely Coupled Reactor Configuration 78 H. Conclusions 92 VI. SUMMARY AND CONCLUSIONS 95 APPENDIX 96 ACKNOWLEDGEMENT 97 REFERENCES 98\",\"PeriodicalId\":153796,\"journal\":{\"name\":\"Nuclear Reactor Physics and Engineering\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Reactor Physics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119582342.ch6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Reactor Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119582342.ch6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
a .问题的描述;B.目标陈述11 . C.多群形式化与幂次迭代法…11二世。伽辽金型近似过程的表述[a]。B.问题的说明和解的性质……C.伽辽金近似法近似问题32a的解。有限维子空间的选择B.基的构造C.近似问题的求解D.系数的生成IV.研究计算机程序的描述[46]时间比较研究48 A。B.计算机程序DARC2D的描述C.研究的范围和局限性50 D.均匀反应器结构54 E.简单的两区反应器结构621000兆瓦的液态金属快增殖反应堆结构。72 G.松耦合反应器结构78 H.结论92 VI.总结和结论95附录96致谢97参考文献98
NUMERICAL SOLUTION OF THE NEUTRON DIFFUSION EQUATION
7 I. DESCRIPTION OF THE PROBLEM 9 A. Introduction 9 B. Statement of Objectives 11 C. The Multigroup Formalism and the Power Iteration Method . . . 11 II. FORMULATION OF A GALERKIN-TYPE APPROXIMATION PROCEDURE 16 A. Introduction 16 B. Statement of the Problem and Properties of the Solution . . . 18 C. The Galerkin Approximation Procedure 25 III. SOLUTION OF THE APPROXIMATE PROBLEM 32 A. Choice of a Finite-dimensional Subspace 32 B. Construction of a Basis 33 C. Solution of the Approximate Problem 38 D. Generation of the Coefficients 39 IV. DESCRIPTION OF THE RESEARCH COMPUTER PROGRAM HOD 46 V. A TIMING COMPARISON STUDY 48 A. Introduction 48 B. Description of the Computer Program DARC2D 48 C. Scope and Limitations of the Studies 50 D. A Homogeneous Reactor Configuration 54 E. A Simple Two-zone Reactor Configuration 62 F. A 1,000 MWe Liquid Metal Fast Breeder Reactor Configuration . 72 G. A Loosely Coupled Reactor Configuration 78 H. Conclusions 92 VI. SUMMARY AND CONCLUSIONS 95 APPENDIX 96 ACKNOWLEDGEMENT 97 REFERENCES 98