基于遗传算法的CNN模型超参数优化

J. Yoo, Hyun-Il Yoon, Hyeong-Gyun Kim, Heesu Yoon, Seung-Soo Han
{"title":"基于遗传算法的CNN模型超参数优化","authors":"J. Yoo, Hyun-Il Yoon, Hyeong-Gyun Kim, Heesu Yoon, Seung-Soo Han","doi":"10.1109/ICECIE47765.2019.8974762","DOIUrl":null,"url":null,"abstract":"Recently CNN is not only widely used in the field of image recognition but also used in various fields such as classifying vibration data. Therefore, increasing the performance of CNN models is becoming more important. One of the various methods to improve the performance of CNN models is to optimize hyper-parameters. This paper presents a method for optimizing the hyper-parameters of CNN models that classify MNIST data using genetic algorithm. Population-based algorithms, different from previous studies, can be used to optimize several parameters at once. In addition, different types and ranges of parameters from the existing genetic algorithms are used. Using this method, the hyper-parameter values that best classify MNIST have been obtained and are presented.","PeriodicalId":154051,"journal":{"name":"2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimization of Hyper-parameter for CNN Model using Genetic Algorithm\",\"authors\":\"J. Yoo, Hyun-Il Yoon, Hyeong-Gyun Kim, Heesu Yoon, Seung-Soo Han\",\"doi\":\"10.1109/ICECIE47765.2019.8974762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently CNN is not only widely used in the field of image recognition but also used in various fields such as classifying vibration data. Therefore, increasing the performance of CNN models is becoming more important. One of the various methods to improve the performance of CNN models is to optimize hyper-parameters. This paper presents a method for optimizing the hyper-parameters of CNN models that classify MNIST data using genetic algorithm. Population-based algorithms, different from previous studies, can be used to optimize several parameters at once. In addition, different types and ranges of parameters from the existing genetic algorithms are used. Using this method, the hyper-parameter values that best classify MNIST have been obtained and are presented.\",\"PeriodicalId\":154051,\"journal\":{\"name\":\"2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECIE47765.2019.8974762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECIE47765.2019.8974762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

近年来,CNN不仅在图像识别领域得到了广泛的应用,在振动数据分类等各个领域也得到了广泛的应用。因此,提高CNN模型的性能变得越来越重要。提高CNN模型性能的方法之一是对超参数进行优化。本文提出了一种利用遗传算法对MNIST数据分类的CNN模型超参数进行优化的方法。与以往的研究不同,基于种群的算法可以同时优化多个参数。此外,还使用了现有遗传算法中不同类型和范围的参数。利用该方法,得到并给出了对MNIST进行最佳分类的超参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Hyper-parameter for CNN Model using Genetic Algorithm
Recently CNN is not only widely used in the field of image recognition but also used in various fields such as classifying vibration data. Therefore, increasing the performance of CNN models is becoming more important. One of the various methods to improve the performance of CNN models is to optimize hyper-parameters. This paper presents a method for optimizing the hyper-parameters of CNN models that classify MNIST data using genetic algorithm. Population-based algorithms, different from previous studies, can be used to optimize several parameters at once. In addition, different types and ranges of parameters from the existing genetic algorithms are used. Using this method, the hyper-parameter values that best classify MNIST have been obtained and are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信