局部配合物的一个改进的滴下定理

Dorna Abdolazimi, S. Gharan
{"title":"局部配合物的一个改进的滴下定理","authors":"Dorna Abdolazimi, S. Gharan","doi":"10.48550/arXiv.2208.04486","DOIUrl":null,"url":null,"abstract":"We prove a strengthening of the trickle down theorem for partite complexes. Given a $(d+1)$-partite $d$-dimensional simplicial complex, we show that if\"on average\"the links of faces of co-dimension 2 are $\\frac{1-\\delta}{d}$-(one-sided) spectral expanders, then the link of any face of co-dimension $k$ is an $O(\\frac{1-\\delta}{k\\delta})$-(one-sided) spectral expander, for all $3\\leq k\\leq d+1$. For an application, using our theorem as a black-box, we show that links of faces of co-dimension $k$ in recent constructions of bounded degree high dimensional expanders have spectral expansion at most $O(1/k)$ fraction of the spectral expansion of the links of the worst faces of co-dimension $2$.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Trickle-Down Theorem for Partite Complexes\",\"authors\":\"Dorna Abdolazimi, S. Gharan\",\"doi\":\"10.48550/arXiv.2208.04486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a strengthening of the trickle down theorem for partite complexes. Given a $(d+1)$-partite $d$-dimensional simplicial complex, we show that if\\\"on average\\\"the links of faces of co-dimension 2 are $\\\\frac{1-\\\\delta}{d}$-(one-sided) spectral expanders, then the link of any face of co-dimension $k$ is an $O(\\\\frac{1-\\\\delta}{k\\\\delta})$-(one-sided) spectral expander, for all $3\\\\leq k\\\\leq d+1$. For an application, using our theorem as a black-box, we show that links of faces of co-dimension $k$ in recent constructions of bounded degree high dimensional expanders have spectral expansion at most $O(1/k)$ fraction of the spectral expansion of the links of the worst faces of co-dimension $2$.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.04486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.04486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了部分配合物的滴流定理的一个强化。给定一个$(d+1)$ -部$d$维简单复形,我们表明,如果“平均而言”协维2面的链接是$\frac{1-\delta}{d}$ -(单边)谱展开器,那么对于所有$3\leq k\leq d+1$,任何协维$k$面的链接都是$O(\frac{1-\delta}{k\delta})$ -(单边)谱展开器。对于一个应用,我们使用我们的定理作为黑盒,证明了在最近的有界度高维展开器结构中,协维$k$面的链接的频谱展开最多为协维$2$最差面的链接的频谱展开的$O(1/k)$分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Trickle-Down Theorem for Partite Complexes
We prove a strengthening of the trickle down theorem for partite complexes. Given a $(d+1)$-partite $d$-dimensional simplicial complex, we show that if"on average"the links of faces of co-dimension 2 are $\frac{1-\delta}{d}$-(one-sided) spectral expanders, then the link of any face of co-dimension $k$ is an $O(\frac{1-\delta}{k\delta})$-(one-sided) spectral expander, for all $3\leq k\leq d+1$. For an application, using our theorem as a black-box, we show that links of faces of co-dimension $k$ in recent constructions of bounded degree high dimensional expanders have spectral expansion at most $O(1/k)$ fraction of the spectral expansion of the links of the worst faces of co-dimension $2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信