简单性和模型选择

J. Sprenger, S. Hartmann
{"title":"简单性和模型选择","authors":"J. Sprenger, S. Hartmann","doi":"10.1093/oso/9780199672110.003.0010","DOIUrl":null,"url":null,"abstract":"Is simplicity a virtue of a good scientific theory, and are simpler theories more likely to be true or predictively successful? If so, how much should simplicity count vis-à-vis predictive accuracy? We address this question using Bayesian inference, focusing on the context of statistical model selection and an interpretation of simplicity via the degree of freedoms of a model. We rebut claims to prove the epistemic value of simplicity by means of showing its particular role in Bayesian model selection strategies (e.g., the BIC or the MML). Instead, we show that Bayesian inference in the context of model selection is usually done in a philosophically eclectic, instrumental fashion that is more tuned to practical applications than to philosophical foundations. Thus, these techniques cannot justify a particular “appropriate weight of simplicity in model selection”.","PeriodicalId":140328,"journal":{"name":"Bayesian Philosophy of Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplicity and Model Selection\",\"authors\":\"J. Sprenger, S. Hartmann\",\"doi\":\"10.1093/oso/9780199672110.003.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Is simplicity a virtue of a good scientific theory, and are simpler theories more likely to be true or predictively successful? If so, how much should simplicity count vis-à-vis predictive accuracy? We address this question using Bayesian inference, focusing on the context of statistical model selection and an interpretation of simplicity via the degree of freedoms of a model. We rebut claims to prove the epistemic value of simplicity by means of showing its particular role in Bayesian model selection strategies (e.g., the BIC or the MML). Instead, we show that Bayesian inference in the context of model selection is usually done in a philosophically eclectic, instrumental fashion that is more tuned to practical applications than to philosophical foundations. Thus, these techniques cannot justify a particular “appropriate weight of simplicity in model selection”.\",\"PeriodicalId\":140328,\"journal\":{\"name\":\"Bayesian Philosophy of Science\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Philosophy of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780199672110.003.0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Philosophy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780199672110.003.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简单是一个好的科学理论的优点吗?简单的理论更有可能是正确的或预测成功的吗?如果是这样,相对于-à-vis预测的准确性,简洁性应该占多大的比重?我们使用贝叶斯推理来解决这个问题,重点关注统计模型选择的背景和通过模型的自由度来解释简单性。我们反驳通过展示其在贝叶斯模型选择策略(例如BIC或MML)中的特殊作用来证明简单性的认识论价值的主张。相反,我们表明,在模型选择的背景下,贝叶斯推理通常是以哲学折衷的、工具的方式进行的,这种方式更倾向于实际应用,而不是哲学基础。因此,这些技术不能证明一个特定的“模型选择中简单性的适当权重”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplicity and Model Selection
Is simplicity a virtue of a good scientific theory, and are simpler theories more likely to be true or predictively successful? If so, how much should simplicity count vis-à-vis predictive accuracy? We address this question using Bayesian inference, focusing on the context of statistical model selection and an interpretation of simplicity via the degree of freedoms of a model. We rebut claims to prove the epistemic value of simplicity by means of showing its particular role in Bayesian model selection strategies (e.g., the BIC or the MML). Instead, we show that Bayesian inference in the context of model selection is usually done in a philosophically eclectic, instrumental fashion that is more tuned to practical applications than to philosophical foundations. Thus, these techniques cannot justify a particular “appropriate weight of simplicity in model selection”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信