基于同步相量的电力系统故障分析数据挖掘

Miftah Al Karim, M. Chenine, Kun Zhu, L. Nordström
{"title":"基于同步相量的电力系统故障分析数据挖掘","authors":"Miftah Al Karim, M. Chenine, Kun Zhu, L. Nordström","doi":"10.1109/ISGTEurope.2012.6465843","DOIUrl":null,"url":null,"abstract":"Phasor measurement units can provide high resolution and synchronized power system data, which can be effectively utilized for the implementation of data mining techniques. Data mining, based on pattern recognition algorithms can be of significant help for power system analysis, as high definition data is often complex to comprehend. In this paper three pattern recognition algorithms are applied to perform the data mining tasks. The deployment is carried out firstly for fault data classification, secondly for checking which faults are occurring more frequently and thirdly for identifying the root cause of a fault by clustering the parameters behind each scenario. For such purposes three algorithms are chosen, k-Nearest Neighbor, Naïve Bayes and the k-means Clustering.","PeriodicalId":244881,"journal":{"name":"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Synchrophasor-based data mining for power system fault analysis\",\"authors\":\"Miftah Al Karim, M. Chenine, Kun Zhu, L. Nordström\",\"doi\":\"10.1109/ISGTEurope.2012.6465843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phasor measurement units can provide high resolution and synchronized power system data, which can be effectively utilized for the implementation of data mining techniques. Data mining, based on pattern recognition algorithms can be of significant help for power system analysis, as high definition data is often complex to comprehend. In this paper three pattern recognition algorithms are applied to perform the data mining tasks. The deployment is carried out firstly for fault data classification, secondly for checking which faults are occurring more frequently and thirdly for identifying the root cause of a fault by clustering the parameters behind each scenario. For such purposes three algorithms are chosen, k-Nearest Neighbor, Naïve Bayes and the k-means Clustering.\",\"PeriodicalId\":244881,\"journal\":{\"name\":\"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2012.6465843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2012.6465843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

相量测量单元可以提供高分辨率和同步的电力系统数据,可以有效地用于数据挖掘技术的实施。基于模式识别算法的数据挖掘可以为电力系统分析提供重要帮助,因为高清晰度数据通常难以理解。本文采用三种模式识别算法来完成数据挖掘任务。该部署首先用于故障数据分类,其次用于检查哪些故障发生的频率更高,第三是通过对每个场景背后的参数进行聚类来识别故障的根本原因。为此,选择了三种算法,k-最近邻,Naïve贝叶斯和k-均值聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchrophasor-based data mining for power system fault analysis
Phasor measurement units can provide high resolution and synchronized power system data, which can be effectively utilized for the implementation of data mining techniques. Data mining, based on pattern recognition algorithms can be of significant help for power system analysis, as high definition data is often complex to comprehend. In this paper three pattern recognition algorithms are applied to perform the data mining tasks. The deployment is carried out firstly for fault data classification, secondly for checking which faults are occurring more frequently and thirdly for identifying the root cause of a fault by clustering the parameters behind each scenario. For such purposes three algorithms are chosen, k-Nearest Neighbor, Naïve Bayes and the k-means Clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信