{"title":"基于线性时频分析的高分辨率单变量SAR图像多变量变化检测","authors":"A. Mian, J. Ovarlez, G. Ginolhac, A. Atto","doi":"10.23919/EUSIPCO.2017.8081548","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel methodology for Change Detection between two monovariate complex SAR images. Linear Time-Frequency tools are used in order to recover a spectral and angular diversity of the scatterers present in the scene. This diversity is used in bi-date change detection framework to develop a detector, whose performances are better than the classic detector on monovariate SAR images.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multivariate change detection on high resolution monovariate SAR image using linear time-frequency analysis\",\"authors\":\"A. Mian, J. Ovarlez, G. Ginolhac, A. Atto\",\"doi\":\"10.23919/EUSIPCO.2017.8081548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel methodology for Change Detection between two monovariate complex SAR images. Linear Time-Frequency tools are used in order to recover a spectral and angular diversity of the scatterers present in the scene. This diversity is used in bi-date change detection framework to develop a detector, whose performances are better than the classic detector on monovariate SAR images.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multivariate change detection on high resolution monovariate SAR image using linear time-frequency analysis
In this paper, we propose a novel methodology for Change Detection between two monovariate complex SAR images. Linear Time-Frequency tools are used in order to recover a spectral and angular diversity of the scatterers present in the scene. This diversity is used in bi-date change detection framework to develop a detector, whose performances are better than the classic detector on monovariate SAR images.