支持向量机的自主资源管理

Oliver Niehörster, Alexander Krieger, J. Simon, A. Brinkmann
{"title":"支持向量机的自主资源管理","authors":"Oliver Niehörster, Alexander Krieger, J. Simon, A. Brinkmann","doi":"10.1109/Grid.2011.28","DOIUrl":null,"url":null,"abstract":"The use of virtualization technology makes data centers more dynamic and easier to administrate. Today, cloud providers offer customers access to complex applications running on virtualized hardware. Nevertheless, big virtualized data centers become stochastic environments and the implification on the user side leads to many challenges for the provider. He has to find cost-efficient configurations and has to deal with dynamic environments to ensure service guarantees. In this paper, we introduce a software solution that reduces the degree of human intervention to manage cloud services. We present a multi-agent system located in the Software as a Service (SaaS) layer. Agents allocate resources, configure applications, check the feasibility of requests, and generate cost estimates. The agents learn behavior models of the services via Support Vector Machines (SVMs) and share their experiences via a global knowledge base. We evaluate our approach on real cloud systems with three different applications, a brokerage system, a high-performance computing software, and a web server.","PeriodicalId":308086,"journal":{"name":"2011 IEEE/ACM 12th International Conference on Grid Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Autonomic Resource Management with Support Vector Machines\",\"authors\":\"Oliver Niehörster, Alexander Krieger, J. Simon, A. Brinkmann\",\"doi\":\"10.1109/Grid.2011.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of virtualization technology makes data centers more dynamic and easier to administrate. Today, cloud providers offer customers access to complex applications running on virtualized hardware. Nevertheless, big virtualized data centers become stochastic environments and the implification on the user side leads to many challenges for the provider. He has to find cost-efficient configurations and has to deal with dynamic environments to ensure service guarantees. In this paper, we introduce a software solution that reduces the degree of human intervention to manage cloud services. We present a multi-agent system located in the Software as a Service (SaaS) layer. Agents allocate resources, configure applications, check the feasibility of requests, and generate cost estimates. The agents learn behavior models of the services via Support Vector Machines (SVMs) and share their experiences via a global knowledge base. We evaluate our approach on real cloud systems with three different applications, a brokerage system, a high-performance computing software, and a web server.\",\"PeriodicalId\":308086,\"journal\":{\"name\":\"2011 IEEE/ACM 12th International Conference on Grid Computing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/ACM 12th International Conference on Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Grid.2011.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM 12th International Conference on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Grid.2011.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

虚拟化技术的使用使数据中心更加动态,更易于管理。今天,云提供商为客户提供访问运行在虚拟化硬件上的复杂应用程序的权限。然而,大型虚拟化数据中心变成了随机环境,对用户端的影响给提供商带来了许多挑战。他必须找到具有成本效益的配置,并且必须处理动态环境以确保服务保证。在本文中,我们介绍了一种软件解决方案,它减少了人为干预管理云服务的程度。我们提出了一个位于软件即服务(SaaS)层的多代理系统。代理分配资源、配置应用程序、检查请求的可行性并生成成本估算。智能体通过支持向量机(svm)学习服务的行为模型,并通过全局知识库共享经验。我们在真正的云系统上用三个不同的应用程序来评估我们的方法,一个代理系统,一个高性能计算软件和一个web服务器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomic Resource Management with Support Vector Machines
The use of virtualization technology makes data centers more dynamic and easier to administrate. Today, cloud providers offer customers access to complex applications running on virtualized hardware. Nevertheless, big virtualized data centers become stochastic environments and the implification on the user side leads to many challenges for the provider. He has to find cost-efficient configurations and has to deal with dynamic environments to ensure service guarantees. In this paper, we introduce a software solution that reduces the degree of human intervention to manage cloud services. We present a multi-agent system located in the Software as a Service (SaaS) layer. Agents allocate resources, configure applications, check the feasibility of requests, and generate cost estimates. The agents learn behavior models of the services via Support Vector Machines (SVMs) and share their experiences via a global knowledge base. We evaluate our approach on real cloud systems with three different applications, a brokerage system, a high-performance computing software, and a web server.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信