核电站二次回路导波腐蚀监测系统的先进信号处理技术

A. Gribok, V. Agarwal
{"title":"核电站二次回路导波腐蚀监测系统的先进信号处理技术","authors":"A. Gribok, V. Agarwal","doi":"10.1115/PVP2018-84024","DOIUrl":null,"url":null,"abstract":"This paper describes the application of independent component analysis (ICA) to detect corrosion-induced defects in commercial nuclear power plants. This paper analyzes the applicability and benefits of ICA when applied to guided wave (GW) technology to detect corrosion in secondary circuits, as well as studying the potential for expanding the range of GW technology to include complex geometries and piping components. The ultrasonic GWs can inspect long stretches of straight piping; however, more complex geometries that include elbows, welds, and tees are causing spurious reflections and coherent noise, which significantly decreases the sensitivity of the GW systems. The potential of ICA to improve detection sensitivity is analyzed and practical recommendations are provided. It is demonstrated on GW data collected at one of the commercial nuclear power plants that ICA, under certain conditions, is capable of separating different coherent noise components and has potential for improving signal-to-noise ratio.","PeriodicalId":275459,"journal":{"name":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","volume":"77 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advanced Signal Processing Techniques for Guided Wave Corrosion Monitoring System in Secondary Circuits of Nuclear Power Plants\",\"authors\":\"A. Gribok, V. Agarwal\",\"doi\":\"10.1115/PVP2018-84024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the application of independent component analysis (ICA) to detect corrosion-induced defects in commercial nuclear power plants. This paper analyzes the applicability and benefits of ICA when applied to guided wave (GW) technology to detect corrosion in secondary circuits, as well as studying the potential for expanding the range of GW technology to include complex geometries and piping components. The ultrasonic GWs can inspect long stretches of straight piping; however, more complex geometries that include elbows, welds, and tees are causing spurious reflections and coherent noise, which significantly decreases the sensitivity of the GW systems. The potential of ICA to improve detection sensitivity is analyzed and practical recommendations are provided. It is demonstrated on GW data collected at one of the commercial nuclear power plants that ICA, under certain conditions, is capable of separating different coherent noise components and has potential for improving signal-to-noise ratio.\",\"PeriodicalId\":275459,\"journal\":{\"name\":\"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition\",\"volume\":\"77 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了独立成分分析(ICA)在商用核电站腐蚀缺陷检测中的应用。本文分析了ICA应用于导波(GW)技术检测二次回路腐蚀的适用性和优势,并研究了将导波技术范围扩大到包括复杂几何形状和管道部件的潜力。超声波探测仪可以检测长段直管;然而,更复杂的几何形状,包括弯头、焊缝和三通,会导致虚假反射和相干噪声,这大大降低了GW系统的灵敏度。分析了ICA提高检测灵敏度的潜力,并提出了实用建议。通过某商用核电站的GW数据验证,在一定条件下,ICA能够分离出不同的相干噪声分量,具有提高信噪比的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Signal Processing Techniques for Guided Wave Corrosion Monitoring System in Secondary Circuits of Nuclear Power Plants
This paper describes the application of independent component analysis (ICA) to detect corrosion-induced defects in commercial nuclear power plants. This paper analyzes the applicability and benefits of ICA when applied to guided wave (GW) technology to detect corrosion in secondary circuits, as well as studying the potential for expanding the range of GW technology to include complex geometries and piping components. The ultrasonic GWs can inspect long stretches of straight piping; however, more complex geometries that include elbows, welds, and tees are causing spurious reflections and coherent noise, which significantly decreases the sensitivity of the GW systems. The potential of ICA to improve detection sensitivity is analyzed and practical recommendations are provided. It is demonstrated on GW data collected at one of the commercial nuclear power plants that ICA, under certain conditions, is capable of separating different coherent noise components and has potential for improving signal-to-noise ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信