{"title":"半监督模糊c均值聚类算法的目标函数","authors":"Chunfang Li, Lianzhong Liu, Wenli Jiang","doi":"10.1109/INDIN.2008.4618199","DOIUrl":null,"url":null,"abstract":"Analyzed here is the physical interpretation of objective function of semi-supervised fuzzy C-means (SS-FCM) algorithm and its coefficient alpha. A conclusion-Stutzpsilas modification to the objective function of Pedrycz is much clearer: unlabeled samples involves in unsupervised learning of FCM, labeled samples involves in unsupervised learning with coefficient (1-a) and participate in supervised learning with a, and when a=1 or 0, the SS-FCM degrades to FCM-is illustrated. The corresponding alternately optimizing algorithm of SS-FCM with fuzzy covariance is provided. The experimental results show that: 1) Modified algorithm has the same semi-supervised role and has much clearer physical interpretation. 2) Using FCM algorithm to assign membership for labeled samples is better than using random number. 3) SS-FCM with fuzzy covariance and a small number of well-selected labeled samples can effectively improve the accuracy and convergence speed.","PeriodicalId":112553,"journal":{"name":"2008 6th IEEE International Conference on Industrial Informatics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Objective function of semi-supervised Fuzzy C-Means clustering algorithm\",\"authors\":\"Chunfang Li, Lianzhong Liu, Wenli Jiang\",\"doi\":\"10.1109/INDIN.2008.4618199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzed here is the physical interpretation of objective function of semi-supervised fuzzy C-means (SS-FCM) algorithm and its coefficient alpha. A conclusion-Stutzpsilas modification to the objective function of Pedrycz is much clearer: unlabeled samples involves in unsupervised learning of FCM, labeled samples involves in unsupervised learning with coefficient (1-a) and participate in supervised learning with a, and when a=1 or 0, the SS-FCM degrades to FCM-is illustrated. The corresponding alternately optimizing algorithm of SS-FCM with fuzzy covariance is provided. The experimental results show that: 1) Modified algorithm has the same semi-supervised role and has much clearer physical interpretation. 2) Using FCM algorithm to assign membership for labeled samples is better than using random number. 3) SS-FCM with fuzzy covariance and a small number of well-selected labeled samples can effectively improve the accuracy and convergence speed.\",\"PeriodicalId\":112553,\"journal\":{\"name\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2008.4618199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th IEEE International Conference on Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2008.4618199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Objective function of semi-supervised Fuzzy C-Means clustering algorithm
Analyzed here is the physical interpretation of objective function of semi-supervised fuzzy C-means (SS-FCM) algorithm and its coefficient alpha. A conclusion-Stutzpsilas modification to the objective function of Pedrycz is much clearer: unlabeled samples involves in unsupervised learning of FCM, labeled samples involves in unsupervised learning with coefficient (1-a) and participate in supervised learning with a, and when a=1 or 0, the SS-FCM degrades to FCM-is illustrated. The corresponding alternately optimizing algorithm of SS-FCM with fuzzy covariance is provided. The experimental results show that: 1) Modified algorithm has the same semi-supervised role and has much clearer physical interpretation. 2) Using FCM algorithm to assign membership for labeled samples is better than using random number. 3) SS-FCM with fuzzy covariance and a small number of well-selected labeled samples can effectively improve the accuracy and convergence speed.