半监督模糊c均值聚类算法的目标函数

Chunfang Li, Lianzhong Liu, Wenli Jiang
{"title":"半监督模糊c均值聚类算法的目标函数","authors":"Chunfang Li, Lianzhong Liu, Wenli Jiang","doi":"10.1109/INDIN.2008.4618199","DOIUrl":null,"url":null,"abstract":"Analyzed here is the physical interpretation of objective function of semi-supervised fuzzy C-means (SS-FCM) algorithm and its coefficient alpha. A conclusion-Stutzpsilas modification to the objective function of Pedrycz is much clearer: unlabeled samples involves in unsupervised learning of FCM, labeled samples involves in unsupervised learning with coefficient (1-a) and participate in supervised learning with a, and when a=1 or 0, the SS-FCM degrades to FCM-is illustrated. The corresponding alternately optimizing algorithm of SS-FCM with fuzzy covariance is provided. The experimental results show that: 1) Modified algorithm has the same semi-supervised role and has much clearer physical interpretation. 2) Using FCM algorithm to assign membership for labeled samples is better than using random number. 3) SS-FCM with fuzzy covariance and a small number of well-selected labeled samples can effectively improve the accuracy and convergence speed.","PeriodicalId":112553,"journal":{"name":"2008 6th IEEE International Conference on Industrial Informatics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Objective function of semi-supervised Fuzzy C-Means clustering algorithm\",\"authors\":\"Chunfang Li, Lianzhong Liu, Wenli Jiang\",\"doi\":\"10.1109/INDIN.2008.4618199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzed here is the physical interpretation of objective function of semi-supervised fuzzy C-means (SS-FCM) algorithm and its coefficient alpha. A conclusion-Stutzpsilas modification to the objective function of Pedrycz is much clearer: unlabeled samples involves in unsupervised learning of FCM, labeled samples involves in unsupervised learning with coefficient (1-a) and participate in supervised learning with a, and when a=1 or 0, the SS-FCM degrades to FCM-is illustrated. The corresponding alternately optimizing algorithm of SS-FCM with fuzzy covariance is provided. The experimental results show that: 1) Modified algorithm has the same semi-supervised role and has much clearer physical interpretation. 2) Using FCM algorithm to assign membership for labeled samples is better than using random number. 3) SS-FCM with fuzzy covariance and a small number of well-selected labeled samples can effectively improve the accuracy and convergence speed.\",\"PeriodicalId\":112553,\"journal\":{\"name\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2008.4618199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th IEEE International Conference on Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2008.4618199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

分析了半监督模糊c均值(SS-FCM)算法目标函数的物理解释及其系数。结论- stutzpsilas对Pedrycz的目标函数进行了更清晰的修改:未标记的样本参与FCM的无监督学习,标记的样本参与系数(1- A)的无监督学习,并参与系数为A的监督学习,当A =1或0时,SS-FCM退化为FCM。给出了相应的模糊协方差SS-FCM交替优化算法。实验结果表明:1)改进算法具有相同的半监督作用,具有更清晰的物理解释。2)使用FCM算法对标记样本进行隶属度分配优于使用随机数。3)采用模糊协方差和少量精心选择的标记样本的SS-FCM可以有效提高准确率和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Objective function of semi-supervised Fuzzy C-Means clustering algorithm
Analyzed here is the physical interpretation of objective function of semi-supervised fuzzy C-means (SS-FCM) algorithm and its coefficient alpha. A conclusion-Stutzpsilas modification to the objective function of Pedrycz is much clearer: unlabeled samples involves in unsupervised learning of FCM, labeled samples involves in unsupervised learning with coefficient (1-a) and participate in supervised learning with a, and when a=1 or 0, the SS-FCM degrades to FCM-is illustrated. The corresponding alternately optimizing algorithm of SS-FCM with fuzzy covariance is provided. The experimental results show that: 1) Modified algorithm has the same semi-supervised role and has much clearer physical interpretation. 2) Using FCM algorithm to assign membership for labeled samples is better than using random number. 3) SS-FCM with fuzzy covariance and a small number of well-selected labeled samples can effectively improve the accuracy and convergence speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信