股票收益横截面的非线性:来自中国的证据

Jianqiu Wang, Guoshi Tong, Ke Wu, Dongxu Chen
{"title":"股票收益横截面的非线性:来自中国的证据","authors":"Jianqiu Wang, Guoshi Tong, Ke Wu, Dongxu Chen","doi":"10.2139/ssrn.3757315","DOIUrl":null,"url":null,"abstract":"We study which characteristics provide incremental predictive information for the cross-section of expected returns in the Chinese stock market. Our results provide empirical evidence for strong nonlinear relations between expected returns and selected characteristics, especially in the trading friction category. While a four-factor model of Liu, Stambaugh, and Yuan (2019) explains a majority of anomalous characteristics-sorted portfolio returns, we find significant alphas when exploring these characteristics jointly using flexible predictive functions. A long-short spread portfolio based on out-of-sample predicted returns by a nonlinear model delivers higher Sharpe ratio than that by a linear model. We document more supportive evidence for the nonlinear model after exploring potential interaction effects with firm size, earnings-to-price ratio, and turnover, state dependency of predictors, and various methods of predictive information aggregation, such as forecast combination, principle component regression, and partial least squares.","PeriodicalId":153840,"journal":{"name":"Emerging Markets: Finance eJournal","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinearity in the Cross-Section of Stock Returns: Evidence from China\",\"authors\":\"Jianqiu Wang, Guoshi Tong, Ke Wu, Dongxu Chen\",\"doi\":\"10.2139/ssrn.3757315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study which characteristics provide incremental predictive information for the cross-section of expected returns in the Chinese stock market. Our results provide empirical evidence for strong nonlinear relations between expected returns and selected characteristics, especially in the trading friction category. While a four-factor model of Liu, Stambaugh, and Yuan (2019) explains a majority of anomalous characteristics-sorted portfolio returns, we find significant alphas when exploring these characteristics jointly using flexible predictive functions. A long-short spread portfolio based on out-of-sample predicted returns by a nonlinear model delivers higher Sharpe ratio than that by a linear model. We document more supportive evidence for the nonlinear model after exploring potential interaction effects with firm size, earnings-to-price ratio, and turnover, state dependency of predictors, and various methods of predictive information aggregation, such as forecast combination, principle component regression, and partial least squares.\",\"PeriodicalId\":153840,\"journal\":{\"name\":\"Emerging Markets: Finance eJournal\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Markets: Finance eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3757315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Markets: Finance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3757315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了哪些特征为中国股票市场的预期收益横截面提供了增量预测信息。我们的研究结果为预期收益与选择特征之间的强烈非线性关系提供了经验证据,特别是在交易摩擦类别中。虽然Liu、Stambaugh和Yuan(2019)的四因素模型解释了大多数异常特征排序的投资组合回报,但我们发现,在使用灵活的预测函数共同探索这些特征时,存在显著的α。基于样本外预测收益的非线性多空价差投资组合比线性模型的夏普比率更高。在探讨了企业规模、市盈率和营业额、预测者的状态依赖性以及预测信息聚合的各种方法(如预测组合、主成分回归和偏最小二乘)的潜在相互作用后,我们为非线性模型提供了更多的支持证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinearity in the Cross-Section of Stock Returns: Evidence from China
We study which characteristics provide incremental predictive information for the cross-section of expected returns in the Chinese stock market. Our results provide empirical evidence for strong nonlinear relations between expected returns and selected characteristics, especially in the trading friction category. While a four-factor model of Liu, Stambaugh, and Yuan (2019) explains a majority of anomalous characteristics-sorted portfolio returns, we find significant alphas when exploring these characteristics jointly using flexible predictive functions. A long-short spread portfolio based on out-of-sample predicted returns by a nonlinear model delivers higher Sharpe ratio than that by a linear model. We document more supportive evidence for the nonlinear model after exploring potential interaction effects with firm size, earnings-to-price ratio, and turnover, state dependency of predictors, and various methods of predictive information aggregation, such as forecast combination, principle component regression, and partial least squares.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信