空间应用的可扩展稀疏贝叶斯网络学习

T. Liebig, Christine Kopp, M. May
{"title":"空间应用的可扩展稀疏贝叶斯网络学习","authors":"T. Liebig, Christine Kopp, M. May","doi":"10.1109/ICDMW.2008.124","DOIUrl":null,"url":null,"abstract":"Traffic routes through a street network contain patterns and are no random walks. Such patterns exist for instance along streets or between neighbouring street segments. The extraction of these patterns is a challenging task due to the enormous size of city street networks, the large number of required training data and the unknown distribution of the latter. We apply Bayesian Networks to model the correlations between the locations in space-time trajectories and address the following tasks. We introduce and examine a Bayesian Network Learning algorithm enabling us to handle the complexity and performance requirements of the spatial context. Furthermore, we apply our method to German cities, evaluate the accuracy and analyse the runtime behaviour for different parameter settings.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Scalable Sparse Bayesian Network Learning for Spatial Applications\",\"authors\":\"T. Liebig, Christine Kopp, M. May\",\"doi\":\"10.1109/ICDMW.2008.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic routes through a street network contain patterns and are no random walks. Such patterns exist for instance along streets or between neighbouring street segments. The extraction of these patterns is a challenging task due to the enormous size of city street networks, the large number of required training data and the unknown distribution of the latter. We apply Bayesian Networks to model the correlations between the locations in space-time trajectories and address the following tasks. We introduce and examine a Bayesian Network Learning algorithm enabling us to handle the complexity and performance requirements of the spatial context. Furthermore, we apply our method to German cities, evaluate the accuracy and analyse the runtime behaviour for different parameter settings.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

通过街道网络的交通路线包含模式,而不是随机行走。这种模式存在于街道沿线或相邻街道段之间。由于城市街道网络的规模巨大,需要大量的训练数据,并且训练数据的分布是未知的,因此这些模式的提取是一项具有挑战性的任务。我们应用贝叶斯网络来模拟时空轨迹中位置之间的相关性,并解决以下任务。我们介绍并研究了一种贝叶斯网络学习算法,使我们能够处理空间上下文的复杂性和性能要求。此外,我们将我们的方法应用于德国城市,评估准确性并分析不同参数设置的运行时行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Sparse Bayesian Network Learning for Spatial Applications
Traffic routes through a street network contain patterns and are no random walks. Such patterns exist for instance along streets or between neighbouring street segments. The extraction of these patterns is a challenging task due to the enormous size of city street networks, the large number of required training data and the unknown distribution of the latter. We apply Bayesian Networks to model the correlations between the locations in space-time trajectories and address the following tasks. We introduce and examine a Bayesian Network Learning algorithm enabling us to handle the complexity and performance requirements of the spatial context. Furthermore, we apply our method to German cities, evaluate the accuracy and analyse the runtime behaviour for different parameter settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信