{"title":"关于矩形的最大独立集的逼近","authors":"Julia Chuzhoy, Alina Ene","doi":"10.1109/FOCS.2016.92","DOIUrl":null,"url":null,"abstract":"We study the Maximum Independent Set of Rectangles (MISR) problem: given a set of n axis-parallel rectangles, find a largest-cardinality subset of the rectangles, such that no two of them overlap. MISR is a basic geometric optimization problem with many applications, that has been studied extensively. Until recently, the best approximation algorithm for it achieved an O(log log n)-approximation factor. In a recent breakthrough, Adamaszek and Wiese provided a quasi-polynomial time approximation scheme: a (1-ε)-approximation algorithm with running time nO(poly(log n)/ε). Despite this result, obtaining a PTAS or even a polynomial-time constant-factor approximation remains a challenging open problem. In this paper we make progress towards this goal by providing an algorithm for MISR that achieves a (1 - ε)-approximation in time nO(poly(log logn/ε)). We introduce several new technical ideas, that we hope will lead to further progress on this and related problems.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"On Approximating Maximum Independent Set of Rectangles\",\"authors\":\"Julia Chuzhoy, Alina Ene\",\"doi\":\"10.1109/FOCS.2016.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Maximum Independent Set of Rectangles (MISR) problem: given a set of n axis-parallel rectangles, find a largest-cardinality subset of the rectangles, such that no two of them overlap. MISR is a basic geometric optimization problem with many applications, that has been studied extensively. Until recently, the best approximation algorithm for it achieved an O(log log n)-approximation factor. In a recent breakthrough, Adamaszek and Wiese provided a quasi-polynomial time approximation scheme: a (1-ε)-approximation algorithm with running time nO(poly(log n)/ε). Despite this result, obtaining a PTAS or even a polynomial-time constant-factor approximation remains a challenging open problem. In this paper we make progress towards this goal by providing an algorithm for MISR that achieves a (1 - ε)-approximation in time nO(poly(log logn/ε)). We introduce several new technical ideas, that we hope will lead to further progress on this and related problems.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Approximating Maximum Independent Set of Rectangles
We study the Maximum Independent Set of Rectangles (MISR) problem: given a set of n axis-parallel rectangles, find a largest-cardinality subset of the rectangles, such that no two of them overlap. MISR is a basic geometric optimization problem with many applications, that has been studied extensively. Until recently, the best approximation algorithm for it achieved an O(log log n)-approximation factor. In a recent breakthrough, Adamaszek and Wiese provided a quasi-polynomial time approximation scheme: a (1-ε)-approximation algorithm with running time nO(poly(log n)/ε). Despite this result, obtaining a PTAS or even a polynomial-time constant-factor approximation remains a challenging open problem. In this paper we make progress towards this goal by providing an algorithm for MISR that achieves a (1 - ε)-approximation in time nO(poly(log logn/ε)). We introduce several new technical ideas, that we hope will lead to further progress on this and related problems.