评估对抗训练对ids和gan的影响

Hassan Chaitou, T. Robert, J. Leneutre, L. Pautet
{"title":"评估对抗训练对ids和gan的影响","authors":"Hassan Chaitou, T. Robert, J. Leneutre, L. Pautet","doi":"10.1109/CSR51186.2021.9527949","DOIUrl":null,"url":null,"abstract":"Deep neural network-based Intrusion Detection Systems (IDSs) are gaining popularity to improve anomaly detection accuracy and robustness. Yet, Deep neural network (DNN) models have been shown to be vulnerable to adversarial attacks. An attacker can use a generator, here a Generative Adversarial Network, to alter an attack so that the IDS model misclassify it as normal network traffic. There is a race between adversarial attacks and mechanisms to make robust IDSs, like Adversarial Training. To our knowledge, no study thoroughly assesses how attack generators or IDS training is sensitive to parameters controlling resources spent during training. Such results provide insights on how much to spend on IDS training. This paper presents the outcome of this assessment for GANs vs adversarial training. Interestingly, it shows that GANs’ evasion capabilities are either very good or poor, with almost no average cases. Resources impact the likelihood of obtaining an efficient generator.","PeriodicalId":253300,"journal":{"name":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing adversarial training effect on IDSs and GANs\",\"authors\":\"Hassan Chaitou, T. Robert, J. Leneutre, L. Pautet\",\"doi\":\"10.1109/CSR51186.2021.9527949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network-based Intrusion Detection Systems (IDSs) are gaining popularity to improve anomaly detection accuracy and robustness. Yet, Deep neural network (DNN) models have been shown to be vulnerable to adversarial attacks. An attacker can use a generator, here a Generative Adversarial Network, to alter an attack so that the IDS model misclassify it as normal network traffic. There is a race between adversarial attacks and mechanisms to make robust IDSs, like Adversarial Training. To our knowledge, no study thoroughly assesses how attack generators or IDS training is sensitive to parameters controlling resources spent during training. Such results provide insights on how much to spend on IDS training. This paper presents the outcome of this assessment for GANs vs adversarial training. Interestingly, it shows that GANs’ evasion capabilities are either very good or poor, with almost no average cases. Resources impact the likelihood of obtaining an efficient generator.\",\"PeriodicalId\":253300,\"journal\":{\"name\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSR51186.2021.9527949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR51186.2021.9527949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于深度神经网络的入侵检测系统(ids)在提高异常检测精度和鲁棒性方面得到了越来越广泛的应用。然而,深度神经网络(DNN)模型已被证明容易受到对抗性攻击。攻击者可以使用生成器(这里是生成对抗网络)来改变攻击,以便IDS模型将其错误地分类为正常的网络流量。对抗性攻击和制造强大的入侵防御系统的机制之间存在竞争,比如对抗性训练。据我们所知,没有研究彻底评估攻击生成器或IDS训练如何对训练期间控制资源的参数敏感。这些结果提供了关于在IDS培训上花多少钱的见解。本文介绍了GANs与对抗训练的评估结果。有趣的是,它显示gan的逃避能力不是很好就是很差,几乎没有平均情况。资源影响获得高效发电机的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing adversarial training effect on IDSs and GANs
Deep neural network-based Intrusion Detection Systems (IDSs) are gaining popularity to improve anomaly detection accuracy and robustness. Yet, Deep neural network (DNN) models have been shown to be vulnerable to adversarial attacks. An attacker can use a generator, here a Generative Adversarial Network, to alter an attack so that the IDS model misclassify it as normal network traffic. There is a race between adversarial attacks and mechanisms to make robust IDSs, like Adversarial Training. To our knowledge, no study thoroughly assesses how attack generators or IDS training is sensitive to parameters controlling resources spent during training. Such results provide insights on how much to spend on IDS training. This paper presents the outcome of this assessment for GANs vs adversarial training. Interestingly, it shows that GANs’ evasion capabilities are either very good or poor, with almost no average cases. Resources impact the likelihood of obtaining an efficient generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信